Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)
\(=x+2\)
c. cho M(x)=0 \(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
vậy x=-2 là nghiệm của đa thức M(x)
tick mk với
b,x=15/4laf nghiệm của đa thức trên
bai 2
a,x=1/2
b,x thuộc(3/4,-5)
c,x= căn bậc 2 cuả 2
`a)M(x)=P(x)-Q(x)`
`=>M(x)=-3x^2+2x+1+3x^2-x+2`
`=>M(x)=x+3`
`b)` Cho `M(x)=0`
`=>x+3=0`
`=>x=-3`
Vậy nghiệm của `M(x)` là `x=-3`
`c)P(x)=Q(x)`
`=>-3x^2+2x+1=-3x^2+x-2`
`=>-3x^2+3x^2+2x-x=-2-1`
`=>x=-3`
Vậy `x=-3` thì `P(x)=Q(x)`