Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có :
DM // BC , EN // BC ⇒ DM // EN
Vì AD = DE và DM // EN
⇒⇒ DM là đường trung bình của tam giác AEN
⇒AM=MN (1)
⇒M là trung điểm của AN
2b, Xét hình thang DMCB
DE=EB và EN // BC
⇒ EN là đường trung bình của hình thang DMCD
⇒MN=NC (2)
Từ (1) và (2) ⇒AM=MN=NC
1: Xét ΔAEN có
D là trung điểm của AE
DM//EN
Do đó: M là trung điểm của AN
2: Xét hình thang BDMC có
E là trung điểm của BD
EN//BC//DM
Do đó: N là trung điểm của MC
Suy ra: NM=NC
mà NM=AM
nên AM=MN=NC
3: Xét hình thang DMCB có
E là trung điểm của BD
N là trung điểm của MC
Do đó: EN là đường trung bình của hình thang DMCB
Suy ra: \(EN=\dfrac{DM+BC}{2}\)
hay \(DM+BC=2\cdot EN\)
a. xét tam giác ABC và tam giác HAC có
góc ACB= góc HCA ( góc chung)
góc BAC = góc AHC (=90độ)
do đó tam giác ABC đồng dạng với tam giác HAC(g.g)
b. theo bài ra ta có góc BAC=90 độ
suy ra tam giác ABC vuôg tại A
ta lại có AB=6cm, AC=8cm
suy ra AB ^2+ AC^2= BC^2
thay vào ta có 6^2+ 8^2= BC^2
suy ra BC^2= 10^2
suy ra BC = 10 (cm)
A A B B C C M M D D E E F F N N F' F'
a) Em tham khảo tại đây.
b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE
Theo câu a ta có DF' = 2AM (1)
Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.
Vậy nên AM = ND (2)
Từ (1) và (2) suy ra NF' = ND
Lại có F'F = DE nên FN = EN hay N là trung điểm EF.
c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)
Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)
nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)
\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)
Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Vậy ta đã chứng minh xong.
Bài 7:
a: Xét ΔAEN có
D là trung điểm của AE
DM//EN
Do đó: M là trung điểm của AN
b: Xét hình thang BDMC có
E là trung điểm của BD
EN//DM//BC
Do đó: N là trung điểm của MC
Suy ra: MN=NC
mà MN=AM
nên AM=MN=NC