K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

=>a=-12

b: \(\Leftrightarrow ax^5-ax^4+\left(a+5\right)x^4-\left(a+5\right)x^3+\left(a+5\right)x^3-\left(a+5\right)x^2+\left(a+5\right)x^2-\left(a+5\right)x+\left(a+5\right)x-a-5+a-4⋮x-1\)

=>a-4=0

=>a=4

25 tháng 10 2016

dài thế

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

26 tháng 9 2016

a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)

\(f\left(x\right)=x^4+ax+b\)

Theo định lí bơ zu 

\(\Rightarrow f\left(2\right)=16+2b+b=0\)

\(\Leftrightarrow2a+b=-16\) ( 1 )

\(\Rightarrow f\left(-2\right)=16-2a+b=0\)

\(\Leftrightarrow-2a+b=-16\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)

 

26 tháng 9 2016

định lí bơ zu :)))), @Võ Đông Anh Tuấn học lớp mấy mà học nó rồi z, mình học theo chương trình đi thi toán qua mạng :v

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

26 tháng 8 2017

Ta có : \(x^2+3x-10=x^2+5x-2x-10=x\left(x+5\right)-2\left(x+5\right)=\left(x-2\right)\left(x+5\right)\)

Vì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\) nên

 \(\left(ax^3+bx^2+5x-50\right)=\left(x-2\right)\left(x+5\right)H\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}2^3a+b.2^2+5.2-50=0\\-5^3a+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)

Vậy \(a=1;b=8\)