K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Bài 9 : Tìm x, biết :

a, (x - 2)(x - 3) + (x - 2) - 1 = 0

\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy x ={1; 3}

b, (x + 2)2 - 2x(2x + 3) = (x + 1)2

\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x

\(\Leftrightarrow6x^3+x^2-2x=0\)

\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)

\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)

\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)

Bài 4:

a) Ta có: \(x^3+6x^2+12x+8\)

\(=x^3+2x^2+4x^2+8x+4x+8\)

\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+4x+4\right)\)

\(=\left(x+2\right)^3\)

b) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

c) Ta có: \(1-9x+27x^2-27x^3\)

\(=1-3x-6x+18x^2+9x^2-27x^3\)

\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)

\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)

\(=\left(1-3x\right)^3\)

d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

2 tháng 8 2020

a/ \(x^2\left(x-5\right)+5-x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

Vậy...

b/ \(3x^4-9x^3=-9x^2+27x\)

\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)

\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)

\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)

\(x^2+3>0\forall x\)

\(\Leftrightarrow3x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy..

c/ \(x^2\left(x+8\right)+x^2=-8x\)

\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)

\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)

\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)

Vậy...

d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)

\(\left(x-2\right)^2+1>0\forall x\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy..

2 tháng 8 2020

Úi, câu d bạn nên làm theo cách của bạn trên đúng hơn nha :< Mình nghĩ câu d mình lập luận bị sai rồi ó

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Lời giải:

a)

$8^3:(-8)^{-5}=8^3.(-8)^5=8^3.(-8^5)=-8^3.8^5=-8^{3+5}=-8^{13}$

b)

$x^3y^4:(x^3y)=x^{3-3}.y^{4-1}=x^0.y^3=y^3$

c)

$5x^2y^4:(10x^2y)=(5:10).(x^2:x^2)(y^4:y)=\frac{1}{2}.1.y^3=\frac{1}{2}y^3$

d)

$\frac{3}{4}(xy)^3:(\frac{-1}{2}x^2y^2)$

$=(\frac{3}{4}: \frac{-1}{2})(x^3:x^2).(y^3:y^2)$

$=\frac{-3}{2}xy$

Bài 6:

a) Ta có: \(x^2-4xy+4y^2-2x+4y-35\)

\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)

\(=\left(x-2y\right)^2-7\cdot\left(x-2y\right)+5\left(x-2y\right)-35\)

\(=\left(x-2y\right)\left(x-2y-7\right)+5\left(x-2y-7\right)\)

\(=\left(x-2y-7\right)\left(x-2y+5\right)\)

b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(=\left(x^2+x\right)^2+3\cdot\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\cdot\left(x^2+x\right)-10\)

\(=\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10\)

\(=\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(=\left(x^2+x+5\right)\left(x-1\right)\left(x+2\right)\)

c) Ta có: \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+384+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)

\(=\left(x^2+10x+20\right)^2\)

d) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

e) Ta có: \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)

\(=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)

\(=\left(x^2+10x\right)^2+24\left(x^2+10x\right)+128\)

\(=\left(x^2+10x\right)^2+16\left(x^2+10x\right)+8\left(x^2+10x\right)+128\)

\(=\left(x^2+10x\right)\left(x^2+10x+16\right)+8\left(x^2+10x+16\right)\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+8\right)\)

\(=\left(x+2\right)\left(x+8\right)\left(x^2+10x+8\right)\)