Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
Ta sẽ biến đổi biểu thức \(B\) quy về dạng có thể dùng được hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{26}-1\) nên \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
Vậy, \(A>B\)
Tương tự với câu \(b\) kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)
Mặt khác, do \(\frac{1}{2}<1\) nên \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)
Vậy, \(B>A\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)= ... =4.(3128-1)
<=>8A=4B <=>2A=B =>B>A
a)A=\(1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
Vậy A < B
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)
Vậy B < A
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1^2< 2000^2\)
Vậy A < B.
b) Ta có: \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}\)
Vậy A > B.
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)
a)
Ta có
a chia 5 dư 4
=> a=5k+4 ( k là số tự nhiên )
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì 25k^2 chia hết cho 5
40k chia hết cho 5
16 chia 5 dư 1
=> đpcm
2) Ta có
\(12=\frac{5^2-1}{2}\)
Thay vào biểu thức ta có
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)
\(\Rightarrow P=\frac{5^{16}-1}{2}\)
3)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)
\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)
\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)
\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)
\(< =>A>B\)
a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)
\(\Rightarrow A< B\)
b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
...
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)
\(\Rightarrow A>B\)
c,d tương tự