K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADF và ΔADC có

AD chung

\(\widehat{FAD}=\widehat{CAD}\)

AF=AC

Do đó: ΔADF=ΔADC

b: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{BDE}=180^0\)(hai góc kề bù)

nên \(\widehat{BDE}+\widehat{BDF}=180^0\)

=>E,D,F thẳng hàng

c: Ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

b: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Ta có: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDB}=180^0\)

nên \(\widehat{BDF}+\widehat{EDB}=180^0\)

=>E,D,F thẳng hàng

d: ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

20 tháng 1 2024

mới gần 10 năm thôi nhỉ tầm giờ chắc chủ câu này có gđ luôn r=)

 

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

24 tháng 10 2021

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBF}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có 

\(\widehat{DBF}=\widehat{DEC}\)

DB=DE

\(\widehat{BDF}=\widehat{EDC}\)

Do đó: ΔDBF=ΔDEC