K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

20 tháng 10 2021

a) \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow x\in\left\{\frac{1}{5};2000\right\}\)

20 tháng 10 2021

b) \(5x^2=13x\)

\(\Leftrightarrow x\left(5x-13\right)=0\)

\(\Leftrightarrow x\in\left\{0;\frac{13}{5}\right\}\)

21 tháng 10 2021

a) \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow x\in\left\{\frac{1}{5};2000\right\}\)

21 tháng 10 2021

\(5x^2=13x\)

\(\Leftrightarrow x\left(5x-13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)

26 tháng 7 2021

Trả lời:

Bài 2: 

a, \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

Vậy ...

b, \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2000=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2000\end{cases}}\)

Vậy ...

c, \(2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)

Vậy ...

d, \(\left(x+1\right)=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

Vậy ...

26 tháng 7 2021

Trả lời:

Bài 1: 

\(C=x-x^2=-\left(x^2-x\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTLN của C = 1/4 khi x = 1/2

\(E=4x^2+8x+y^2-4y+32=\left(2x\right)^2+8x+y^2-4y+4+4+24\)

\(=\left[\left(2x\right)^2+8x+4\right]+\left(y^2-4y+4\right)+24=\left(2x+2\right)^2+\left(y-2\right)^2+24\ge24\forall x\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy GTNN của E = 24 khi x = - 1; y = 2

21 tháng 9 2017

a ) \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x=2000\) \(x=\dfrac{1}{5}\)

b ) \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)

Vậy \(x=0\) \(x=\sqrt{13}\)

c ) \(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x=0\) \(x=-\dfrac{1}{5}\)

d ) \(\left(x+1\right)=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy \(x=0\) \(x=-1\)

e ) \(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left(loại\right)\end{matrix}\right.\)

Vậy \(x=0\)

21 tháng 9 2017

a, \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)

b,\(x^3-13x=0\)

\(\Leftrightarrow x\left(x ^2-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)

c,\(x+5x^2=0\)

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)

d,\(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e,\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT........

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

10 tháng 4 2020

Bài làm

b) 2x( x - 3 ) + 5( x - 3 ) = 0

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=3\end{matrix}\right.\)

Vậy tập nghiệm S = { -5/2; 3 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy tập nghiệm S = { 2; 3 }

d) ( x2 - 4 ) - ( x - 2 )( 3 - 2x ) = 0

<=> ( x - 2 )( x + 2 ) - ( x - 2 )( 3 - 2x ) = 0

<=> ( x - 2 )( x + 2 - 3 + 2x ) = 0

<=> ( x - 2 )( 3x - 1 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy S = { 2; 1/3 }

10 tháng 4 2020

a) 2(x - 2) + 5x(x - 1) = 5x

⇔ 2x - 4 + 5x2 - 5x = 5x

⇔ -3x - 4 + 5x2 = 5x

⇔ 3x + 4 - 5x2 + 5x = 0

⇔ 8x + 4 - 5x2 = 0

⇔ 5x2 - 8x - 4 = 0

⇔ 5x2 + 2x - 10x - 4 = 0

⇔ x(5x + 2) - 2(5x + 2) = 0

⇔ (5x + 2)(x - 2) = 0

\(\left\{{}\begin{matrix}5x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=-2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-2}{5}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = \(\left\{\frac{-2}{5};2\right\}\)

21 tháng 8 2020

1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)

2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)

3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)

4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)

5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)

6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

tí làm nửa kia 

21 tháng 8 2020

8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)

\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)

10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)

11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)

13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)

\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)

14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)

\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)

\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)

5 tháng 5 2019

a, (x+2)(x-3)=0

\(\left\{{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

=>S={-2;-3}

b, (x-5)(7-x)=0

\(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

=>S={5;7}

c, (2x+3)(-x+7)=0

\(\left\{{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\left\{{}\begin{matrix}2x=-3\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=7\end{matrix}\right.\)

=>S={-3/2;7}

5 tháng 5 2019

a) (x+2)(x+3)=0

<=> \(\left\{{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b) (x-5)(7-x)

<=> \(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

c) ( 2x+3)(-2+7)

<=>\(\left\{{}\begin{matrix}2x+3=0\\7-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{2}{7}\end{matrix}\right.\)

d) ( -10x+5)(2x+8)

<=>\(\left\{{}\begin{matrix}5-10x=0\\2x+8=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-4}{1}\end{matrix}\right.\)

e) (x-1)(x+5)(-3x+8)=0

<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\\8-3x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

f) (x-1)(3x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

g) (x-1)(x+2)(x-3)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)

h) (5x+3)(x2+4)(x-1)=0

<=> \(\left\{{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)

x2+4 > 0 với mọi x∈ R

<=>\(\left\{{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Bạn tự kết luận nha , thông cảm cho tớ !leuleu

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)