Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tính DE:
Trong tam giác ADH có : AE vừa là đường trung tuyến , vừa là đường cao => Tam giác ADE cân tại A => AD = AH
Trong tam giác vuông ABC có AH là đường cao => AH^2 = BH * CH = 4*9 = 36 => AH =6cm
mà AH = DE (cmt) => DE = 6cm
b/cm : AD*AB = AE*AC:
theo mk , câu này bn ghi đề sai r , đề đúng là : cm: AD*AC = AE*BC
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật
\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)
Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)
\(\Rightarrow MDEN\) là hình thang vuông
Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH
\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)
Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH
\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)
\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)