Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A)
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^
câu d tương đương với
CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD
Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó
bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2
tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
Mình làm thế này đúng không ạ
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a)Xet 2 tam giac vuong ahb va tam giac vuong ahc
Co ab=ac(tam giac abc can tai a)
ah canh goc vuong chung
Suy ra tam giac vuong ahb=tam giac vuong ahc(canh huyen-canh goc vuong)
b)
Ta co dh//ac(gt)
suy ra goc dha=goc hac(2 goc so le trong)(1)
mat khac , lai co tam giac vuong ahb=tam giac vuong ahc(cmt)
suy ra goc bah=goc cah(2 goc tuong ung)(2)
tu (1)va(2)=>goc dha=goc dah(=goc hac)
Do do tam giac dha can tai d
Nen ad=dh
c de sai
Tham khảo
a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)
Ta lại có: HD // AC ( GT )
⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)
Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^
Hay: ˆDHA=ˆDAHDHA^=DAH^
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH (câu a)
⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến ΔABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )
Mà ΔABC cân tại A (GT)
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
⇒ DB =DH
Lại có AD = DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến ΔABC (4)
Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
mà bn bt vẽ hình này ko ạ