Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Câu a)
\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)
Đến đây bạn tự giải tiếp và tìm nghiệm nha!
Câu c)
\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)
Đến đây ta nhận xét rằng vế trái lẻ và chia hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
10, \(5x^3+11y^3=-13z^3\)
\(\Rightarrow5x^3+11y^3⋮13\)
\(\Rightarrow x,y⋮13\)
\(\Rightarrow z⋮13\)
Đến đây dùng lùi vô hạn nhé
4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z
+) TH1: x = 0; y = 0 => z = 2 (tm)
+) TH2: x = 0; y = 1=> z = 2(tm)
+) Th3: x= 1; y = 0 => z = 2(tm)
+) TH4: x = 1; y= 1 => z = 2 (tm)
+) TH5: y > 1
với \(x\le y\)
Khi đó: x! = 1.2.3...x;
y! = 1.2.3...x.(x+1)...y
z! = 1.2.3....x.(x+1)...y(y+1)...z
Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z
<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1
<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1
Với \(y\le x\)cũng làm tương tự và loại'
Vậy:...
a) \(\left(5,11\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(3;1\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=3+11t\\y=1+5t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
b) \(\left(7,5\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(4;23\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=4+5t\\y=23-7t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
c) Bạn đọc tự giải.