K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

a) xét tam giác oam và tam giác obm có:

OA = OB ( GT )

AM = MB ( GT )

OM chung

=> tam giác oam = tam giác obm ( c.c.c)

b) ta có oam= obm( theo a )

=> oam = obm (2 góc t.ư)

=> oam+ obm= 180°(2 góc kề bù)

=> oam= obm = 180° : 2 = 90°

=> om vuông góc ab

c) xét tam giác amd và tam giác bmd có

am= bm(gt)

da=db(gt)

md chung

=> tam giác amd= tam giác bmd(c.c.c)

=> dam= dbm( 2 góc t.ư)

=> dam+dbm=180° (2góc kề bù)

=> dam= dbm= 180° : 2 = 90°

=> md vuông góc ab

Mà om vuông góc ab ( theo b )

md vuông góc ab(cmt)

Mà M thuộc od => M,O,D thẳng hàng

Bn tự vẽ hình hộ mk nhé!

24 tháng 12 2016

thank bạn nha haha

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
13 tháng 12 2021

a, vì ab =ac (gt)

=> abc là tam giác cân tại a

vì tam giác abc cân tại a

=> góc b = góc c

vì m là trung điểm bc

=> bm = mc

xét tam giác amb và tam giác amc có

bm =mc

góc b = góc c

ab = ac

=> tam giác amb = tam giác amc (cgc)

 

13 tháng 12 2021

b, vì 2 tam giác chứng minh ở câu a bằng sau

=> bam = cam( cặp góc tương ứng)

=> am là tia p/g của bac

7 tháng 9 2021

a: Xét tứ giác ABDC có 

M là trung điểm của đường chéo AD

M là trung điểm của đường chéo BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD và AB=CD

a) Xét ∆ABC có : .

AM là trung tuyến 

=> ∆ABC cân tại A , trung tuyến AM vừa là trung trực vừa là phân giác 

b) Vì AM là trung trực ∆ABC 

=> AMC = 90° 

Xét ∆BDC có : 

DM là trung tuyến 

=> ∆BDC cân tại D , trung tuyến DM là trung trực và là phân giác 

=> DMC = 90° 

Ta có : 

AMD = AMC + DMC 

AMD = 90° + 90° = 180° 

=> AMD là góc bẹt 

=> A, M , D thẳng hàng