Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
Bài 1:
Giải
Gọi số hoa điểm tốt của 3 lớp 7A,7B,7C lần lượt là a,b,c(a,b,c >0 )
Theo bài ta có: b + c - a =270
Và a : b : c =15 : 17 :16 \(\Leftrightarrow\frac{a}{15}=\frac{b}{17}=\frac{c}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{b}{17}=\frac{c}{16}=\frac{a}{15}\)\(=\frac{b+c-a}{16+17-15}\)\(=\frac{270}{18}=15\)
=>\(\hept{\begin{cases}a=225\\b=255\\c=240\end{cases}}\)
Vậy số hoa điểm tốt của lớp 7a là 225 bông
lớp 7B là 255 bông
lớp 7C là 240 bông
Xin lỗi bài 2 mình ko bt làm đâu
a: Xét ΔABH và ΔKBH có
BA=BK
\(\widehat{ABH}=\widehat{KBH}\)
BH chung
Do đó: ΔABH=ΔKBH
Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
Suy ra: IA=IK
mà BA=BK
nên BI là đường trung trực của AK
=>BI vuông góc với AK
b: Xét ΔNAK có
NH là đường cao
NH là đường trung tuyến
Do đó:ΔNAK cân tại N
mà NI là đường cao
nên NI là phân giác của góc ANK
không biết