Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n=2n2−3n−2n2−2n
=−5n⋮5=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2 (k,m \(\in\)N)
Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ
=>m=2a+1 (a \(\in\) N)
=>m2=(2a+1)2=(2a)2+2.2a.1+12
=4a.a+4.a+1
=4a(a+1)+1
=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)
=>n là số chẵn
=>n+1 là số lẻ => n+1=2b+1 (b \(\in\)N)
=>k2=(2b+1)2=(2b)2+2.2b.1+12
=4b.b+4b+1
=4b(b+1)+1
=>n=4b(b+1)+1-1=4b(b+1)
Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp
=>4b(b+1) chia hết cho 2.4=8 (1)
Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2 (mod 3)
Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1
=>Để k2+m2 =2 (mod 3)
thì k2=1 (mod 3)
và m2=1 (mod 3)
=>m2-k2 chia hết cho 3
=>(2n+1)-(n+1)=n chia hết cho 3
Vậy n chia hết cho 3 (2)
Từ (1) và (2) và (8;3)=1
=>n chia hết cho 8.3=24 (đpcm)