Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chung
KA=KH
Do đó: ΔBAK=ΔBHK
=>BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: KA=KH
=>K nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BK là đường trung trực của AH
=>BK\(\perp\)AH
a, xét tam giác ABM và tam giác ACM có : AM chung
góc ABM = góc ACM = 90
AB = AC do tam giác ABC cân tại A (Gt)
=> tam giác ABM = tam giác ACM (ch-cgv)
=> góc BAM = góc CAM (đn) mà AM nằm giữa AB và AC
=> AM là pg của góc BAC (đn)
b, Tam giác ABC cân tại A (gt)
AM là pg của góc BAC (câu a)
=> AM đồng thời _|_ với BC (đl)
a: Xét ΔBHK vuông tại H và ΔBAC vuông tại A co
BK=BC
góc KBH chung
=>ΔBHK=ΔBAC
=>KH=AC
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: AE=EH
EH<EC
=>AE<EC
a: BC=5cm
b: XétΔBHK vuông tại H và ΔBAC vuông tại A có
BK=BC
góc HBK chung
Do đó: ΔBHK=ΔBAC
Suy ra: BH=BA
c: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
BA=BH
Do đó: ΔABE=ΔHBE
Suy ra: \(\widehat{ABE}=\widehat{HBE}\)
hay BE là phân giác của góc KBC
Ta có: ΔBKC cân tại B
mà BE là phân giác
nên BE là đường cao
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Hình bạn tự vẽ nhé
Giải
Xét ΔABK vuông tại A và ΔHBK vuông tại H có
KB là cạnh chung
KA=KH(gt)
Do đó: ΔABK=ΔHBK(cạnh huyền-cạnh góc vuông)
⇒BA=BH(hai cạnh tương ứng)
hay B nằm trên đường trung trực của AH(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: KA=KH(gt)
nên K nằm trên đường trung trực của AH(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BK là đường trung trực của AH
hay BK⊥AH(đpcm)
A B C H K 1 2 I
- Gọi giao điểm của BK và AH tại I .
- Xét \(\Delta BAK\) và \(\Delta BHK\) có :
\(\left\{{}\begin{matrix}BK=BK\\\widehat{BAK}=\widehat{BHK}\left(=90^o\right)\\AK=HK\left(gt\right)\end{matrix}\right.\)
=> \(\Delta BAK\) = \(\Delta BHK\) ( ch - cgv )
=> AB = HB ( cạnh tương ứng )
Lại có KH = KA ( gt )
=> KB là đường trung trực .
=> KB là đường cao .
=> BK vuông góc với AH .