Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
Q(x) \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)
b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\); \(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
Đây là suy nghĩ của mk thôi, mình cx ko chắc lắm đâu:
Ta có:
F(x)=4x3 + 3x4 \(-\)1 - x2+4x2 -x3-2x4 +3-3x3
=(3x4-2x4) +(4x3-x3-3x3)+(-x2+4x2)+( -1+3)
= x4 + 3x2 +2
Lại có:
x4\(\ge\)0
=> -x4\(\ge\)0
3x2\(\ge\)0
=> 3(-x)2\(\ge\)0
2>0
=> x4+3x2+2>0
Vậy đa thức F(x) luôn nhận giá trị lớn hơn 0 vs mọi x hay đa thức F(x) không có nghiệm trong R
F (x) = 4x3 + 3x4 - 1 - x2 + 4x2 - x3 - 2x4 + 3 - 3x3
F (x) = (3x4 - 2x4) + (4x3 - x3 - 3x3) + (-x2 + 4x2) + (-1+3)
F (x) = x4 + 3x2 + 2
Ta có: x4 \(\ge\) 0 với mọi x
Ta có: 3x2 \(\ge\) 0 với mọi x
=> x4 + 3x2 \(\ge\) 0 với mọi x
Mà x4 + 3x2 + 2 > 0
Vậy F (x) vô nghiệm
a) P(x)= 2x^3-2x+x^2+3x+2
P(x)= 2x^3+(-2x+3x)+x^2+2
P(x)= 2x^3+1x+x^2+2
Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1
Q(x)=(4x^3-3x^3)+(-3x^2+4x^2)+(-3x+4x)+1
Q(x)= 1x^3+1x^2+1x+1
b) P(-1)= 2.(-1^3)+1.(-1)+(-1^2)+2
P(-1)= -2+(-1)+1+2
P(-1)= 0
=>x=-1 là nghiệm của P(x)
Q(-1)= 1.(-1^3)+1.(-1^2)+1.(-1)+1
Q(-1)= -1+1+(-1)+1
Q(-1)= 0
=>x=-1 là nghiệm của Q(x)
c) R(x)=P(x)-Q(x)=(2x^3+1x+x^2+2)-(1x^3+1x^2+1x+1)
R(x)=P(x)-Q(x)= 2x^3+1x+1x^2+2-1x^3+1x^2+1x+1
R(x)=P(x)-Q(x)= (2x^3-1x^3)+(1x+1x)+(1x^2+1x^2)+2+1
R(x)=P(x)-Q(x)= 1x^3+2x+2x^2+2+1
=> R(x)=1x^3+2x+2x^2+2+1
ahihi mik ko chắc nha !!!!
có j thì bn kiểm phép tính lại giùm mik vì mik hay quên mấy chỗ đó nha
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)