Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a) (x2+1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\Phi\\x=5\end{cases}}\)
Vậy x=5
b) 5x.x2+1=6
5x.x2=6-1
5x.x2=5
x.x2=5:5
x3=1
=> x=1
c) \(\left|x\right|\le2\)
=> x={2,1,0,-1,-2,....}
d) (x+1)+(x+3)+(x+5)+...+(x+99)=0
(x+x+x+...+x)+(1+3+5+...+99)=0
50x+2500=0
=> 50x=2500
=> x=50
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
Bài 1:
a) Chỗ y6 là 6.y hay là y6
b) \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Rightarrow2x-2-6x-6-8x-12=16\)
\(\Rightarrow\left(2x-6x-8x\right)-\left(2+6+12\right)=16\)
\(\Rightarrow-12x-20=16\)
\(\Rightarrow-12x=36\)
\(\Rightarrow x=-3\)
Vậy x = -3
c) \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)
\(\Rightarrow\left(x-5\right)^{x+1}\left[1-\left(x-5\right)^{12}\right]=0\)
\(\Rightarrow\left(x-5\right)^{x+1}=0\) hoặc \(1-\left(x-5\right)^{12}=0\)
+) \(\left(x-5\right)^{x+1}=0\Rightarrow x-5=0\Rightarrow x=5\)
+) \(1-\left(x-5\right)^{12}=0\Rightarrow\left(x-5\right)^{12}=1\)
\(\Rightarrow x-5=\pm1\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=-1\Rightarrow x=4\)
Vậy \(x\in\left\{6;4\right\}\)
Bài 2: a, thiếu dữ liệu
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left[\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)