K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)

Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.

Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121

Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố 

Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7

                                        và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3

                                        và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

26 tháng 2 2020

Khi xưa vác bút theo thầy
Bây giờ em lại vác cày theo trâu.

30 tháng 1 2024

bn 

ღŤ.Ť.Đღ

nói cái qq j zay

27 tháng 2 2020

Bài 1 

Ta có: \(a.b=2018^{2018}\)

         \(2018\equiv2\left(md3\right)\)

          \(2018^{2018}\equiv2^{2018}\left(md3\right)\)

          \(2018\equiv\left(2^2\right)^{1009}=4^{1009}\)

 Mà \(4\equiv1\left(md3\right)\Rightarrow4^{1009}\equiv1\left(md3\right)\)

 \(\Rightarrow a.b=2018^{2018}\equiv1\left(md3\right)\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}a\equiv1\left(md3\right)\\b\equiv1\left(md3\right)\end{cases}}\\\hept{\begin{cases}a\equiv2\left(md3\right)\\b\equiv2\left(md3\right)\end{cases}}\end{cases}}\)

Khi đó:\(\orbr{\begin{cases}a+b\equiv2\left(md3\right)\\a+b\equiv1\left(md3\right)\end{cases}}\)

\(\Rightarrow a+b\)ko chia hết cho 3\(\Rightarrow a+b\)ko chia hết cho 2019

Vậy \(a+b\)ko chia hết cho 2019

Xin lỗi bạn nha ,máy mình bị liệt 1 s chữ , md là mod nha ! Hk t !

18 tháng 6 2016

Trong tập hợp số nguyên không có khái niệm hai số nguyên tố cùng nhau. Trong bài này phải nói trị tuyệt đối của chúng đôi một nguyên tố cùng nhau.

18 tháng 6 2016

Không thể có \(\left|c\right|>1\) vì c có ít nhất một ước nguyên tố \(p\ge2\)

Do đó p phải là ước của a hoặc b. Vô lý vì (a;c) = ( b;c) = 1; từ đó suy ra \(c\in\left\{-1;1\right\}\)

*TH1 : \(c=-1\)

\(\Rightarrow-\left(a+b\right)=ab\)

\(\Rightarrow ab-\left[-\left(a+b\right)\right]=0\)

\(\Rightarrow ab+a+b+1=0+1\)

\(\Rightarrow\left(ab+a\right)+\left(b+1\right)=1\)

\(\Rightarrow a\left(b+1\right)+\left(b+1\right)=1\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)=1\)

Do đó suy ra \(a+1=b+1=-1\) ( Chúng không thể bằng 1 vì nếu như vậy a=b=0 )

\(\Rightarrow a=b=-2\)

Do đó (a;b) = 2 \(\ne\)1 ( trái với giả thiết )

*TH2 : \(c=1\)

\(\Rightarrow a+b=ab\)

\(\Rightarrow ab-\left(a+b\right)+1=0+1=1\)

\(\Rightarrow ab-a-b+1=1\)

\(\Rightarrow\left(ab-a\right)-\left(b-1\right)=1\)

\(\Rightarrow a\left(b-1\right)-\left(b-1\right)=1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Rightarrow a-1=b-1=1\) ( chúng không thể bằng -1 vì như vậy thì a = b = 0 )

\(\Rightarrow a=b=2\)

\(\Rightarrow\left(a;b\right)=2\ne1\) (trái với giả thiết )

Do đó không tồn tại a, b, c thỏa mãn đề bài.