Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACK ta có
^AHB = ^AKC = 900
^BAH = ^CAK ( AD là pg )
Vậy tam giác ABH ~ tam giác ACK ( g.g )
Xét tam giác BDH và tam giác CDK ta có
^BDH = ^CDK ( đối đỉnh )
^BHD = ^CKD = 900
Vậy tam giác BDH ~ tam giác CDK (g.g)
b, Ta có \(\frac{AH}{AK}=\frac{BH}{CK}\)( tỉ số đồng dạng )
\(\frac{DH}{DK}=\frac{BH}{CK}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AH}{AK}=\frac{DH}{DK}\Rightarrow AH.DK=DH.AK\)
c, câu cuối dễ rồi, bạn tự làm nhé
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)