Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của hoang nha phuong - Toán lớp 8 - Học toán với OnlineMath
Vậy diện tích ADOE bằng:
78 : 6 = 13 (cm2)
\(\Delta ABC\)cân tại A có AH là đường cao \(\Rightarrow\)H là trung điểm BC \(\Rightarrow HB=HC=\frac{BC}{2}=5\left(cm\right)\)
Xét \(\Delta ABH\)vuông tại H ta có: \(AH^2+BH^2=AB^2\)( định lý Pytago )
\(\Rightarrow AH^2+5^2=13^2\)\(\Rightarrow AH^2=144\)\(\Rightarrow AH=12\left(cm\right)\)
mà O là trung điểm AH \(\Rightarrow OA=OH=\frac{AH}{2}=6\left(cm\right)\)
Xét \(\Delta AOG\)và \(\Delta ABH\)có: +) Chung chiều cao hạ từ B xuống AH
+) \(OA=\frac{1}{2}AH\)
\(\Rightarrow S_{AOG}=\frac{1}{2}S_{ABH}\)
Tương tự ta có: \(S_{AOP}=\frac{1}{2}S_{AHC}\)
\(\Rightarrow S_{AOG}+S_{AOP}=\frac{1}{2}\left(S_{ABH}+S_{AHC}\right)\)
\(\Rightarrow S_{AGOP}=\frac{1}{2}S_{ABC}=\frac{1}{2}.\frac{1}{2}AH.BC=\frac{1}{4}.12.10=30\left(cm^2\right)\)
Vậy \(S_{AGOP}=30\left(cm^2\right)\)
Qua H kẻ đường thẳng song song với EC cắt AB tại F. Sử dụng định lý đường trung bình của tam giác chứng minh được F là trung điểm của BE và
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH