Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(dpcm\right)\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3(*)\)
Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow \left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Leftrightarrow \left(\frac{a}{b}\right)^3=\frac{a}{d}(**)\)
Từ \((*); (**)\Rightarrow \left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\left(2\right)\)
Từ (1) và (2) ⇒ Đpcm
Ta có :\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=c^2ab+d^2ab\)
\(\Leftrightarrow\left(a^2cd+b^2cd\right)-\left(c^2ab+d^2ab\right)=0\)
\(\Leftrightarrow aacd+bbcd-ccab-ddab=0\)(tất cả là dấu nhân ko phải số tự nhiên có 4 chữ số nha)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ad-bc\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\left(\text{đ}pcm\right)\)
bn ơi cho mk hỏi ac vói bd rút gọn kiểu gì mà nó mất đc
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{b}=\dfrac{c}{d}+\dfrac{d}{d}\)
\(\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)
- Ta có: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(1\right)\)
\(\Leftrightarrow\left(a+b\right)d=\left(c+d\right)b\)
\(\Leftrightarrow ad+bd=bc+bd\)
\(\Leftrightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(2\right)\)
Vì (2) đúng nên (1) đúng
- \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+b}{b}=\dfrac{c+d}{d}=\dfrac{a+b-c-d}{b-d}=\dfrac{a-c}{b-d}+1\)
\(\dfrac{a+b}{b}=\dfrac{c+d}{d}=\dfrac{a+b+c+d}{b+d}=\dfrac{a+c}{b+d}+1\)
Ta suy ra được: \(\dfrac{a-c}{b-d}+1=\dfrac{a+c}{b+d}+1\)
\(\Leftrightarrow\dfrac{a-c}{b-d}=\dfrac{a+c}{b+d}\left(3\right)\)
Mà theo t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\left(4\right)\)
Vì (4) đúng nên (3) đúng, ta suy ra được đpcm