K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

thoi minh luoi lam minh ko giai het duoc dau

9 tháng 8 2017

- Đề bài bài 4 nhầm nha. 

- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004

25 tháng 3 2015

Ta có 46y là số chẵn với mọi y.

Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)

=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2

=>y=(2004-59.2)/46=41 

25 tháng 3 2015

bài 1: x=2 ; y=41

bài 2: 3

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 2:

Ta có: 

$59x=2004-46y=2(1002-23y)\vdots 2$

$\Rightarrow x\vdots 2$. Mà $x$ là số nguyên tố nên $x=2$

Khi đó:

$59.2+46y=2004$

$\Rightarrow y=\frac{2004-59.2}{46}=41$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Lời giải:

Gọi số cần tìm là $a$. Vì $a$ chia 19 dư 3, chia 4 dư 3 nên $a-3\vdots 19;4$

$\Rightarrow a-3=BC(19,4)\vdots BCNN(19,4)$ hay $a-3\vdots 76$

Đặt $a=76k+3$ với $k$ tự nhiên.

Vì $a$ chia 17 dư 9 nên:

$a-9\vdots 17$

$\Rightarrow 76k-6\vdots 17$

$\Rightarrow 76k-6-17.4k\vdots 17$

$\Rightarrow 8k-6\vdots 17$

$\Rightarrow 8k-6-34\vdots 17$

$\Rightarrow 8k-40\vdots 17$

$\Rightarrow 8(k-5)\vdots 17$

$\Rightarrow k-5\vdots 17$

$\Rightarrow k=17m+5$ với $m$ tự nhiên.

Khi đó:

$a=76k+3=76(17m+5)+3=1292m+383$

Vậy $a$ chia $1292$ dư $383$

6 tháng 2 2020

\(\text{Ta có:}2;6;10;...;8010\text{ đều chia 4 dư 2}\)

\(\Rightarrow X\equiv2^2+3^2+4^2+....+2004^2\left(mod\text{ }10\right)\)

\(\text{ mà:}1^2+2^2+3^2+....+2004^2=\frac{2004.2005.4009}{6}=333.2005.4009\)

\(\Rightarrow X\equiv333.2005.4009-1\left(\text{mod 10}\right)\equiv3.5.9-1\equiv4\left(\text{mod 10}\right)\)

Vậy X có chữ số tận cùng là 4

6 tháng 2 2020

\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{10}-1}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+\left(\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}\right)+..........\left(\frac{1}{2^9}+\frac{1}{2^9}+....+\frac{1}{2^9}\left(\text{512 số hạng }\frac{1}{2^9}\right)\right)\)

\(=1+1+1+1+1+1+1+1+1+1\)

\(=10\left(\text{điều phải chứng minh}\right)\)

\(\text{bài 2 câu b tương tự câu a}\)

16 tháng 1 2018

a)    Đánh giá:    \(\left|x-y-2\right|\ge0;\)               \(\left|y+2\right|\ge0\)

\(\Rightarrow\)\(\left|x-y-2\right|+\left|y+2\right|\ge0\)

Vậy    \(\left|x-y-2\right|+\left|y+2\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-2=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=-2\end{cases}}\)

Vậy....

những câu sau cũng đánh giá tương tự nhé

b)   \(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy....