Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(...\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< 2\)
@Nguyễn Khanh
b, 1 = 1
1/2 + 1/3 = 1/(1 + 1) + 1/(1 + 2) < 2/(1 + 1) = 2/2 = 1
1/4 + 1/5 + 1/6 + 1/7 = 1/(3 + 1) + 1/(3 + 2) + 1/(3 + 3) + 1/(3 + 4) < 4/(3 + 1) = 4/4 = 1
1/8 + 1/9 + ... + 1/15 = 1/(7 + 1) + 1/(7 + 2) + ... + 1/(7 + 8) < 8/(7 + 1) = 8/8 = 1
1/16 + 1/17 + ... + 1/31 = 1/(15 + 1) + 1/(15 + 2) + ... + 1/(15 + 16) < 16/(15 + 1) = 16/16 = 1
1/32 + 1/33 + ... + 1/63 = 1/(31 + 1) + 1/(31 + 2) + ... + 1/(31 + 32) < 32/(31 + 1) = 32/32 = 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 1 + 1 + 1 + 1 + 1 + 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 6 (đpcm)
@Nguyễn Khanh
B< 1+(1/1.2+1/2.3+...+1/62.63)
B<1+(1-1/2+1/2-1/3+...+1/62-1/63)
B<1+1-1/63
B<2-1/63
B<6-3/189
mà 6-3/189<6
Vậy B<6
b, gọi D=2/3.4/5....10000/10001
Ta có: 1/2<2/3 3/4<4/5 .. ..... 9999/10000<10000/10001
=> C<D 1
C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001
C.D=1/10001 2
Từ 1 : C<D => C.C<C.D<1/10001
=>C^2<1/10001<1/10000
=>C^2<(1/100)^2
Vậy C<1/100 (đpcm)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
a) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.................
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< 1-\frac{1}{2014}< 1\)
\(\Rightarrow B< 1\)
\(\Rightarrow1+B< 1+1\)
Hay \(A< 2\)
C) Ta có: \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
.................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\)
\(\Rightarrow C^2< \left(\frac{1}{2}.\frac{3}{4}.....\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\right)\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C^2< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
2A=1+1/2+1/2^2+1/2^3+...+1/2^99
-A= 1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
-------------------------------------------------------------------
A=1-1/2^100
A=2^100-1/2^100<1(dpcm)
B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =
=1-1/2-1/2-1/3+.........+1/99-1/100
=1-1/100
=99/100
vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2
Bài 1 :
\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\cdot\frac{24}{50}=1\)
\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)
#Louis
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}x=1\)
Đến đây dễ rồi :)))
Bn tự tính típ nha
a)ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => B < 6
b) Đặt A = (1/2)(3/4)(5/6) ... (9999/10000) (A > 0)
.Và B = (2/3)(4/5)(6/7) ... (10000/10001) (B > 0)
Ta có A.B = (1/2)(2/3)(3/4) ... (10000/10001) = 1/10001 (1)
Mặt khác :
1/2 < 2/3
3/4 < 4/5
................
................
9999/10000 < 10000/10001
Nhân tất cả vế theo vế ---> A < B ---> A² < A.B (2)
(1),(2) ---> A² < 1/10001 ---> A < căn(1/10001) < căn(1/10000) = 1/100 (đpcm)
tham khảo nhé cái này trên Yahoo đó
a)ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => B < 6
b) Đặt A = (1/2)(3/4)(5/6) ... (9999/10000) (A > 0)
.Và B = (2/3)(4/5)(6/7) ... (10000/10001) (B > 0)
Ta có A.B = (1/2)(2/3)(3/4) ... (10000/10001) = 1/10001 (1)
Mặt khác :
1/2 < 2/3
3/4 < 4/5
................
................
9999/10000 < 10000/10001
Nhân tất cả vế theo vế ---> A < B ---> A² < A.B (2)
(1),(2) ---> A² < 1/10001 ---> A < căn(1/10001) < căn(1/10000) = 1/100 (đpcm)