K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sách 6,7,8 có 2 bài này nè. mk k bt ghi ps nên mk ko gửi đc sorry nha. Hhh

9 tháng 3 2020

a)\(A=\frac{10^{2014}+2016}{10^{2015}+2016}=>10A=\frac{10^{2015}+20160}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\left(1\right)\)

\(B=\frac{10^{2015}+2016}{10^{2016}+2016}=>10B=\frac{10^{2016}+20160}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2106}\left(2\right)\)

từ 1 zà 2 

=> 10A>10B

=>A>B

7 tháng 7 2017

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)

\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)

.......

~ Chúc học tốt ~ 

Ai ngang qua xin để lại 1 L - I - K - E

7 tháng 7 2017

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)

\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)

\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)

\(3A=\frac{1}{6}-\frac{1}{24360}\)

\(3A=\frac{1353}{8120}\)

\(A=\frac{1353}{8120}:3\)

\(A=\frac{451}{8120}\)

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

21 tháng 7 2017

Bài 1 : 

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)

\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)

\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)

\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)

Bài 2 : 

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)

28 tháng 4 2017

2/1*2*3+2/3*4*5+...+2/2009*2010*2011

A=2/2*(1/1-1/2-1/3+1/2-1/3-1/4+1/4-1/5-1/6+...+1/2009-1/2010-1/2011

A=1*(1-1/2011)

A=1*2010/2011=2010/2011

suy ra: 2010/2011<1 

suy ra 1/2 của 1 lớn hơn 2010/2011

VẬY A NHỎ HƠN 1/2

VẬY 

27 tháng 1 2018
Mô biet
24 tháng 4 2019

Rút gọn các vế đi bạn

24 tháng 4 2019

Tách phần lử trên ra sao cho có thể rút gọn với phần ơn dưới