Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
b) Ta có: \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(-5x+1\right)\)
c) Ta có: \(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
d) Ta có: \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(2x+5\right)\left(x-1\right)\)
e) Ta có: \(x^3-3x^2+1-3x\)
\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
f) Ta có: \(x^2-4x-5\)
\(=x^2-4x+4-9\)
\(=\left(x-2\right)^2-3^2\)
\(=\left(x-2-3\right)\left(x-2+3\right)\)
\(=\left(x-5\right)\left(x+1\right)\)
g) Ta có: \(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)
h) Ta có: \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
k) Ta có: \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=3x\left(x+2\right)\)
m) Ta có: \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2x.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.1.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) \(\frac{x^2}{4}+2xy+4y^2\)
\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)
\(=\left(\frac{x}{2}+2y\right)^2\)
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)
\(=-a^4b^4\left(4b+3a\right)^2\)
h) \(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
i) \(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2.5x^2y+y^2\)
\(=\left(5x^2-y\right)^2\)
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$
a: \(x^2-8x+16x=x^2+8x=x\left(x+8\right)\)
b: \(4x^2-8xyz+4y^2=4\left(x^2-2xyz+y^2\right)\)
c: \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)