Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a/\)
\(4x-4y+x^2-2xy+y^2\)
\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
\(b/\)
\(x^4-4x^3-8x^2+8x\)
\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)
\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x-4\right)\)
\(d/\)
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)
\(e/\)(Xem lại đề)
\(x^4+x^3+x^2+2x+1\)
\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^3+x+1\right)\)
\(f/\)
\(x^3-4x^2+4x-1\)
\(=x\left(x^2-4x+4\right)-1^2\)
\(=x\left(x-2\right)^2-1\)
\(=[\sqrt{x}\left(x-2\right)]^2-1\)
\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)
\(c/\)
\(x^3+x^2-4x-4\)
\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
a 4x -4y +(x-y)^2
=4(x-y)+(x-y).(x-y)
=(x-y).(4+x-y)
c x^2(x+1)-4(x+1)
(x+1).(x^2-4)
d x^4-(x^2-2x+1)
=x^4-(x-1)^2
=x^2(x-x+1)(x-x-1)
MIK KO BIT DUNG HAY KO CON B THI MIK KO BIET LAM
Câu b dễ thôi
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
a: \(16x^3+0,25yz^3\)
\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)
\(=0,25\left(64x^3+yz^3\right)\)
b: \(x^4-4x^3+4x^2\)
\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)
\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
c: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)^2\)
d: \(x^3+x^2+x+1\)
\(=x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+1\right)\)
e: \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
f: \(2x^2-18\)
\(=2\cdot x^2-2\cdot9\)
\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)
g: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
h: \(x^4y^4+4\)
\(=x^4y^4+4x^2y^2+4-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
i: \(x^4+4y^4\)
\(=x^4+4x^2y^2+4y^4-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
k: \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
a) \(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
b) \(x^4-4x^3-8x^2+8x\)
\(=x^4+2x^3-6x^3-12x^2+4x^2+8x\)
\(=x^3\left(x+2\right)-6x^2\left(x+2\right)+4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3-6x^2+4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
c) \(x^3+x^2-4x-4\)
\(=x^3-2x^2+3x^2-6x+2x-4\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-2\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)
d) \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2\right)^2-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
e)Sửa đề \(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
f) \(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)