Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
CM chiều xuôi.
Có: \(2x+3y⋮17.\) CMR: \(9x+5y⋮17\)
\(\Rightarrow9\left(2x+3y\right)⋮17\)
\(\Rightarrow18x+27y⋮17\)
\(\Rightarrow18x+10y+17y⋮17\)
MÀ \(17y⋮17\)
\(\Rightarrow2\left(9x+5y\right)⋮17\)
\(\Rightarrow9x+5y⋮17\left(đpcm\right)\) do 2 ko chia hết cho 17
CM chiều đảo:
Có: \(9x+5y⋮17\) . CMR: \(2x+3y⋮17\)
=> \(18x+10y⋮17\)
=> \(18x+27y-17y⋮17\)
=> \(18x+27y⋮17\) do \(17y⋮17\)
=> \(2x+3y⋮17\) do 9 ko chia hết cho 17.
VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.
**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ \(x;y\inℤ\) nhé !!!!
a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17
Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17
Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17.
b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9
a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5
Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)
9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135
2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158
=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158.
1 , 71^50 < 37^75
3 , n = 36 , a = 6
2 , và 4 , tui không biết làm
Làm phiền các bạn giải ra giúp mình với chứ đừng nói kết quả
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60