Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé !
a, Xét tam giác AEM và tam giác DBM , ta có:
Góc BMD= góc AME ( 2 góc đối đỉnh)
DM=MA(gt)
ME=MB(gt)
do đó tam giác AEm= tam giác DBM(c-g-c)
suy ra : AE=BD( 2 cạnh tưởng ứng)
b, Xét tam giác MDC= tam giác MAF , ta có
Góc AMF= góc DMC ( đối đỉnh)
MF=MC (gt)
MA=MD(gt)
do đó tam gaisc MDC= tam giác MAF (c-g-c)
suy ra : góc FAM = góc CMD (2 góc tưởng ứng) và ở vị trí 2 góc so le trong nên AF // BC
c, Ta có :góc MAE= góc MDB (tam giác ADE= tam giác DMB) và ở vị trí so le trong nên AE // BC
mà AF// BC (câu b)
Theo tiên đề Ơ-clit thì 2 đường thẳng AE và AF trùng nhau nên 3 điểm A,E,F thẳng hàng .
Chúc bạn học tốt !!!
https://olm.vn/hoi-dap/detail/204652944487.html tham khao nha
F A E M B D C
A,Xét \(\Delta AME\)và\(\Delta DMB\)có
AM=DM (gt)
BM=EM (gt)
AME^=DMB^ (đối đỉnh)
\(=>\Delta AME=\Delta DMB\left(c-g-c\right)\)
\(=>AE=BD\)
B,Xét \(\Delta AMF\)và \(\Delta DMC\)có:
\(DM=AM\left(gt\right)\)
\(CM=FM\left(gt\right)\)
AMF^=CMC^(Đối đỉnh)
\(=>\Delta AMF=\Delta DMC\left(c-g-c\right)\)
=>FAM^=CDM^
Do 2 góc này = nhau và ở vị trí sole
\(=>AF//DC\)
C,theo câu A ta có : EAM^=BDM^
=>AE//BD
theo câu B ta có :
AF//DC
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a: Xét ΔAME và ΔDMB có
MA=MD
\(\widehat{AME}=\widehat{DMB}\)
ME=MB
Do đó: ΔAME=ΔDMB
Xét tứ giác AEDB có
M là trung điểm của AD
M là trug điểm của EB
Do đó: AEDB là hình bình hành
Suy ra: AE//BC
b: Xét tứ giác AFDC có
M là trug điểm của AD
M là trung điểm của FC
Do đó: AFDC là hình bình hành
Suy ra: AF//BC
mà AE//BC
và AF,AE có điểm chug là A
nên E,A,F thẳng hàng
Xem nào, để chứng minh được thì phải vẽ hình ra đã, sau đó dựa theo công thức là làm được thôi anh/chị ạ. Em học lớp 6 nhưng học qua cái này rồi nên cũng biết sơ sơ một chút thui....
b1 :
A B C I
tự cm tam giác ABC vuông
=> góc ABC + góc ACB = 90 (đl)
BI là pg của góc ABC => góc IBC = góc ABC : 2
CI là pg của góc ACB => góc ICB = góc ACB : 2
=> góc IBC + góc ICB = (góc ABC + góc ACB) : 2
=> góc IBC + góc ICB = 45
xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180
=> góc BIC = 135