Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :F = 3^1 + 3^2 + 3^3 + ... + 3^100
nên 3F = 3^2 + 3^3 + 3^4 + ... + 3^101 => 3F - F = 3^101 - 3
Do đó 2F + 3 = 3^101 - 3 + 3 = 3^101 = 3^100.3 = (3^50)^2.3 không là số chính phương, vì 3 không phải là số chính phương.
Ta có : \(S=3+3^2+3^3+...+3^{100}\)
=> \(3S=3^2+3^3+3^4+...+3^{101}\)
\(2S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2S=3^{101}-3\)
\(=>2S+3=3^{101}-3+3=3^{101}\)
\(=\left(3^4\right)^{25}\cdot3\)
\(=\left(...1\right).3\)
\(=\left(...3\right)\)
Vậy \(2S+3\) không là số chính phương (đpcm)
\(M=3^0+3^1+3^2+...+3^{49}+3^{50}\)
\(3M=3^1+3^2+3^3+...+3^{50}+3^{51}\)
\(3M-M=3^{31}-1\)
\(2M=3^{4.7+3}-1\)
\(2M=81^7.27-1\)
\(2M=\overline{...1}.27-1\)
\(2M=\overline{...7}-1=\overline{...6}\)
\(M=\overline{...3}\Rightarrow M\)không phải số chính phương
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1
Bài 1 : Ta có ;\(F=3^1+3^2+3^3+...+\)\(3^{100}\)
nên \(3F=3^2+3^3+3^4+...+3^{101}\)\(\Rightarrow3F-F=3^{101}-3\)
Do đó : \(2F+3=3^{101}-3+3=3^{101}=3^{100}.3=\left(3^{50}\right)^2.3\)không là số chính phương ,vì 3 không phải là số chính phương
Bài 2 :Gỉa sử H có 81 ước
Vì số lượng các ước của H là 81 ( là số lẻ ) nên H là số chính phương (1)
Mặt khác :tổng các chữ số của H là :
\(1+2+3+...+9+\left(1+0\right)+\left(1+1\right)+\left(1+2\right)\)
Vì \(51⋮3\)nhưng 51 không chia hết cho 9 nên H chia hết cho 3 nhưng H không chia hết cho 9 ,do đó H không là số chính phương :mâu thuẫn với (1)
Vậy H khong thể có 11 ước
Chúc bạn học tốt ( -_- )
Bài 1 :
F = 31 + 32 + ... + 3100
=> 3F = 32 + 33 + ... + 3101
=> 2F = ( 32 + 33 + ... + 3101 ) - ( 31 + 32 + ... + 3100 ) = 3101 - 31
=> 2F + 3 = 3101 = 3100 . 3 = ( 350 )2 . 3 ko là số chính phương vì 3 ko là số chính phương