K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Xét ΔOAB và ΔODC có

\(\widehat{OAB}=\widehat{ODC}\)(hai góc so le trong, AB//DC)

\(\widehat{AOB}=\widehat{DOC}\)(hai góc đối đỉnh)

Do đó: ΔOAB∼ΔODC(g-g)

\(\frac{OA}{OD}=\frac{OB}{OC}\)

hay \(OA\cdot OC=OB\cdot OD\)(đpcm)

b) Xét ΔAHO và ΔDKO có

\(\widehat{AHO}=\widehat{DKO}\left(=90^0\right)\)

\(\widehat{AOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔAHO∼ΔDKO(g-g)

\(\frac{OH}{OK}=\frac{AO}{DO}\)(các cặp cạnh tương ứng)

\(\frac{AO}{DO}=\frac{AB}{CD}\)(ΔOAB∼ΔODC)

nên \(\frac{OH}{OK}=\frac{AB}{CD}\)(đpcm)

Bài 2:

Cho tam giác ABC vuông tại A,đường cao AH và trung tuyến AM,Tính diện tích tam giác AMH,BH = 4cm,CH = 9cm,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Bài 3:

a) Xét ΔAHB và ΔBCD có

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB∼ΔBCD(g-g)

b) Xét ΔADH và ΔBDA có

\(\widehat{ADH}\) chung

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

Do đó: ΔADH∼ΔBDA(g-g)

\(\frac{AD}{BD}=\frac{DH}{DA}\)

hay \(AD^2=BD\cdot DH\)(đpcm)

c) Áp dụng định lí pytago vào ΔADB vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

\(\Leftrightarrow BD=\sqrt{100}=10cm\)

Ta có: \(AD^2=BD\cdot DH\)(cmt)

\(6^2=10\cdot DH\)

hay \(DH=\frac{6^2}{10}=3,6cm\)

Áp dụng định lí pytago vào ΔAHD vuông tại H, ta được:

\(AD^2=AH^2+DH^2\)

\(\Leftrightarrow AH^2=AD^2-DH^2=6^2-3.6^2=23,04\)

hay \(AH=\sqrt{23,04}=4,8cm\)

Vậy: DH=3,6cm; AH=4,8cm

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.a.Tính tỉ số  NB/NCb.Cho AB = 8cm, CD = 17cm.Tính MN?Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.a.Chứng minh IK // ABb.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.Bài 3: Cho tam giác nhọn...
Đọc tiếp

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.

a.Tính tỉ số  NB/NC

b.Cho AB = 8cm, CD = 17cm.Tính MN?

Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.

a.Chứng minh IK // AB

b.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.

Bài 3: Cho tam giác nhọn ABC và các đường cao BD, CE, AM cắt nhau tại H.

a,Chứng minh:  ΔABD = ΔACE

b, Chứng minh: ΔAED ~ ΔACB và tính góc AED biết góc ACB = 48°

c, EH.EC=EA.EB

d, Chứng minh H là giao điểm ba đường phân giác của tam giác EDM

Bài 4:  Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.

a.) Chứng minh : AB2 = BH . BC

b) Chứng minh tam giác ADE đồng dạng với tam giác ABC.

c) Tính diện tích tam giác ADE

Bài 5: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD; đường cao AH.  Tính độ dài  BC ;  BH  ;  AH  ; AD?

0