K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Biết làm câu a thì mình làm trước câu a thôi nha 

Ta có OM // AB 

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )

ON // AB

\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )

AB // CD 

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)

\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)

26 tháng 2 2018

Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

11 tháng 4 2017

bn viết tắt mk k hiểu 

bài này dễ mà 

Em tham khảo nha.

Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

Bài 1:a) tìm x,y,z biết\(x^2+y^2+z^2=xy+yz+zx\)\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)b) Giải phương trình\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại Fa)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOCb)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)c) Gọi K là điểm bất kì...
Đọc tiếp

Bài 1:

a) tìm x,y,z biết

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

b) Giải phương trình

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại F

a)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOC

b)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

c) Gọi K là điểm bất kì thuộc OE,nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF

Bài 3: Cho hình bình hành ABCD, vẽ đường thẳng d cắt các cạnh AB, AD tại M và K và cắt đường chéo AC tại G. CMR: \(\frac{AB}{AM}+\frac{AD}{AK}=\frac{AC}{AG}\)

TRONG BÀI 2, BÀI 3 BIẾT CÂU NÀO LÀM CÂU ĐÓ

GIÚP MÌNH BÀI HÌNH NHÉ MÌNH SẼ KẾT BẠN VÀ THƯỞNG 1 TICK/CÂU

 

0
13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)