Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi IK là đường phân giác của \(BIC\)^
Ta có:B^+C^=180-A^=120
\(\Rightarrow DBC\)^+ECB^=120:2=60
\(\Rightarrow\)BIC^=180-60=120
\(\Rightarrow\)BIE^=180-BIC^=180-120=60(kề bù)
Mà BIC^=120\(\Rightarrow\)BIK^=60
Xét t/g BIK và t/g BIE có:
BIE^=BIK^,IBK^=IBE^,BI chung
\(\Rightarrow\)t/g BIK=t/g BIE(g.c.g)
\(\Rightarrow IE=IK\)
Chứng minh tương tự \(\Rightarrow ID=IK\)
\(\Rightarrow ID=IE\)
Tự vẽ hình
A B C D E I F
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.
a) Ta thấy ^B+^C=180o−60o=120o
⇒^IBC+^ICB=^B+^C2 =60o
Vậy thì ^BIC=180o−^IBC−^ICB=120o
b) Ta có ngay ^EIB=^IBC+^ICB=60o=^BIN
Vậy thì ΔEBI=ΔNBI(g−c−g)⇒IE=IN
Tương tự ID = IN nên IE = IN = ID.
đây là bài cô Huyền làm , bn tham khảo nhé ~! chúc các bn hok tốt !
Kẻ phân giác IH của \(\widehat{BIC}\)
Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)
Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)
Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)
Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)
Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)
\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)