Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tọa độ giao điểm của (P) và (d) là:
\(\frac{x^2}{4}=-\frac{x}{2}+2\Rightarrow x^2=-2x+8\Rightarrow x^2+2x-8=0\Rightarrow\orbr{\begin{cases}x=-4\Rightarrow y=4\\x=2\Rightarrow y=1\end{cases}}\)
Vậy có 2 giao điểm \(\orbr{\begin{cases}A\left(-4;4\right)\\A\left(2;1\right)\end{cases}}\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{4}x^2+\dfrac{1}{2}x-2=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-8=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-4;2\right\}\\y\in\left\{4;1\right\}\end{matrix}\right.\)
Bài 1:
phần a tự vẽ được rồi nhỉ.
b, Gọi pt đường thẳng AB là y=ax+b
-Thay hoành độ điểm A vào (P) ta được y=1
thay x=-1, y=1 vào ta có: -a+b=1(1)
-Thay hoành độ điểm B vào (P) ta được y=4
thay x=2, y=4 vào ta có: 2a+b=4(2)
Từ (1) và(2) ta có hpt:\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
⇒Pt đường thẳng AB là y=x+2
a/ Bạn tự vẽ
b/ Phương trình hoành độ giao điểm:
\(\frac{1}{2}x=-x+3\Rightarrow\frac{3}{2}x=3\Rightarrow x=2\)
Thay vào pt (d1) \(\Rightarrow y=\frac{1}{2}x=1\)
Vậy tọa độ giao điểm là \(\left(2;1\right)\)
c/ Ta có \(x_M=4\Rightarrow y_M=\frac{1}{2}.4=2\Rightarrow M\left(4;2\right)\)
Gọi pt (d) có dạng \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}a=-1\\4a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=6\end{matrix}\right.\) \(\Rightarrow y=-x+6\)
1.
Đồ thị hàm số:
2.
Phương trình hoành độ giao điểm:
\(\dfrac{x^2}{4}=\dfrac{-x}{2}+2\)
\(\Leftrightarrow\dfrac{x^2}{4}+\dfrac{x}{2}-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(x=2\Rightarrow y=1\Rightarrow\left(2;1\right)\)
\(x=-4\Rightarrow y=4\Rightarrow\left(-4;4\right)\)
3.
Phương trình tiếp tuyến của \(\left(P\right)\) có dạng \(y=ax+b\left(d'\right)\)
Vì \(\left(d'\right)//\left(d\right)\Rightarrow-\dfrac{1}{2}=a;b\ne2\Rightarrow y=-\dfrac{1}{2}x+b\left(d'\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\)
\(-\dfrac{1}{2}x+b=\dfrac{x^2}{4}\Leftrightarrow\dfrac{1}{4}x^2+\dfrac{1}{2}x-b=0\left(1\right)\)
\(\Delta'=\dfrac{1}{4}+b=0\Leftrightarrow b=-\dfrac{1}{4}\)
\(\Rightarrow y=-\dfrac{1}{2}x-\dfrac{1}{4}\left(d'\right)\)
\(\left(1\right)\Leftrightarrow\dfrac{1}{4}x^2+\dfrac{1}{2}x+\dfrac{1}{4}=0\Leftrightarrow x=-1\Rightarrow y=\dfrac{1}{4}\)
\(\Rightarrow\left(-1;\dfrac{1}{4}\right)\)