Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a]
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8
c) (0.01):2,5=(0,75x).(0,75)
0,004 =(0,75x).(0,75)
=> x=0.0071
Đề này bn xem lại coi có đúng k
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
A) \(\frac{10}{12}\)+\(2\)- /\(\frac{-2}{3}\)/ -\(\frac{3}{4}\)= \(\frac{10}{12}\)+2-\(\frac{2}{3}\)-\(\frac{3}{4}\)= \(\frac{10}{12}\)+\(\frac{24}{12}\)-\(\frac{8}{12}\)-\(\frac{9}{12}\)=\(\frac{17}{12}\)
tương tự bài B= \(\frac{59}{40}\)
mk hk bk ghi dáu GTTĐ nên mk ghi như thế
bạn tính kết quả trong dấu GT tuyệt đối rồi bạn mở dấu GTTĐ bằng cách cho số đó trở thành số dương là được
chúc bn may mắn
\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)
\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)
\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
\(\frac{4}{5}-|x-\frac{1}{6}|=\frac{2}{3}\)
\(\Rightarrow|x-\frac{1}{6}|=\frac{2}{15}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{6}=\frac{2}{15}\\x-\frac{1}{6}=-\frac{2}{15}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{1}{30}\end{cases}}\)
Vậy.....
a, => |5/3.x| = 1/6
=> 5/3.x = -1/6 hoặc 5/3.x = 1/6
=> x = -1/10 hoặc x = 1/10
Tk mk nha
a. (0,125)3 . 512
= \(\frac{1}{512}\).512
= 1
b. \(\left(\frac{90}{15}\right)^3\)
= 63 = 216
c. [(0,1)3]
= \(\frac{1}{1000}\)
d. \(\left[\left(\frac{-1}{27}\right)^3\right]^6\)
= \(\left(-\frac{1}{27}\right)^{18}\)