Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
tìm a,b,c biết:
3a = 2b; 4b = 3c và a + 2b - 3c
giải
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)
với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)
với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)
vậy a = 10,b=15,c=20
tương tự câu 2
Bai 1:
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{3a+b}{3c+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{c}=\frac{3a+b}{3c+d}\)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\)(Đpcm)
Bài 2:
\(\frac{2}{x}=\frac{3}{y}\)
=> \(\frac{4}{x^2}=\frac{9}{y^2}=\frac{2.3}{x.y}=\frac{6}{96}=\frac{1}{16}\)
=> \(\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\)
=> \(\hept{\begin{cases}x=8\\y=12\end{cases}}\)
Bài 1: \(\frac{a}{b}=\frac{c}{d};\)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Leftrightarrow\) \(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{3a+b}{3c+d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Leftrightarrow\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Rightarrow\)điều phải chứng minh
Bài 2 : tìm x,y biết \(\frac{2}{x}=\frac{3}{y}\)và xy=96
\(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{xy}{2\times3}=\frac{96}{6}=16\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}\Rightarrow\hept{\begin{cases}x=32\\y=48\end{cases}}}\)
vậy \(\hept{\begin{cases}x=32\\y=48\end{cases}}\)
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
a) Ta có a/b=2a/2b=c/d=2a+c/2b+d ( áp dụng t/c của dãy tỉ số bằng nhau)
=> a/b=2a+c/2b+d => ĐCM
b) Ta có a/b=c/d=2a/2b=3c/3d=2a+3c/2b+3d ( áp dụng t/c của dãy tỉ số bằng nhau)
=> a/b=2a+3c/2b+3d
=> a.(2b+3d)=b.(2a+3c) => ĐCM