Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Mà \(xyz=30\)
\(\Rightarrow240k^3=30\)
\(\Rightarrow k^3=\dfrac{1}{8}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)
Vậy...
Bài 2: sai đề
Bài 3:
Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Ta có: \(x+2y+3z=38\)
\(\Rightarrow2k+1+8k-6+18k+15=38\)
\(\Rightarrow28k=28\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)
Vậy...
1) Ta có :
\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)
\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)
=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Thay vào đẳng thức xyz = 30
=> 8k.6k.5k = 30
<=> 240k3 = 30
<=> k3 = 8
<=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)
b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .
c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Thay vào đẳng thức , ta có :
x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38
=> 28k = 38
=> k = \(\dfrac{19}{14}\)
Vậy .....
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)
và x2 - 2y2 - z2 = 44
A/dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2-z^2}{4-18-25}=\dfrac{44}{-39}=-\dfrac{44}{39}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=-\dfrac{176}{39}\left(voli\right)\\y^2=-\dfrac{132}{13}\left(voli\right)\\z^2=-\dfrac{1100}{39}\left(voli\right)\end{matrix}\right.\)
Vậy k tìm đc x,y,z thỏa mãn đề
p/s: chắc là sai đề đó bạn, sửa thành x2 - 2y2 + z2 = 44 thì mới ra kq nhé
Ta có :
- x/3 = y/7 suy ra : x/6 = y/14
- y/2 = z/5 suy ra : y/14 = z/35
Và ................................
Kết quả là : x = 24 ; z = 140
ai tk mk mk tk lại
Ta có:
- x/3 = y/7 suy ra: x/6 = y/14
- y/2 = z/5 suy ra: y/14 = z/35
Và.......................................................
Nói chung kết quả: x=24
y=56
z=140
a: 3x=2y nên x/2=y/3
7y=5z nên y/5=z/7
=>x/10=y/15=z/21
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
=>x=20; y=30; z=42
b: 2x=3y=5z
nên x/15=y/10=z/6
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
=>x=75; y=50; z=30
d: Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2+2y^2-3z^2=-100
=>18k^2+32k^2-3*25k^2=-100
=>25k^2=100
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
b)ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{-6}\Rightarrow\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{-216}=\frac{x^3}{125}=\frac{y^3}{64}=\frac{3z^3}{-648}\)
ADTCDTSBN
có: \(\frac{x^3}{125}=\frac{3z^3}{-648}=\frac{x^3+3z^3}{125+\left(-648\right)}=\frac{-14121}{-523}=27\)
=> x3/125 = 27 => x3 = 3 375 => x = 15
y3/64 = 27 => y3 = 1 728 => y = 12
z3/-216 =27 => z3 = -5 832 => z3 = -18
KL:...
câu c thì mk ko bk! sr bn nha!
a) ta có: \(\frac{x}{y}=\frac{7}{20}\Rightarrow x20=y7\Rightarrow\frac{x}{7}=\frac{y}{20}\Rightarrow\frac{x}{49}=\frac{y}{140}\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow y3=z7\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{140}=\frac{z}{60}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
ADTCDTSBN
có: \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}=\frac{x-y+z}{49-140+60}=\frac{-155}{-31}=5\)
=> x/49 = 5 => x = 245
y/140 = 5 => y = 700
z/60 = 5 => z = 300
KL:...
Bài2:
Vì x:y:z tỉ lệ với 4:5:6 =>\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\) mà \(x^2\)-\(2y^2\)+\(z^2\)= 18
Ta có:
\(\dfrac{x}{4}\)=\(\dfrac{x^2}{16}\)
\(\dfrac{y}{5}\)=\(\dfrac{2y}{5}\)=\(\dfrac{2y^2}{10}\)
\(\dfrac{z}{6}\)=\(\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số= nhau,ta có:
\(\dfrac{x^2}{16}\)=\(\dfrac{2y^2}{10}\)=\(\dfrac{z^2}{36}\)=\(\dfrac{x^2-2y^2+z^2}{16-10+36}\)=\(\dfrac{18}{42}\)=\(\dfrac{3}{7}\)
\(\dfrac{x^2}{16}\)=\(\dfrac{3}{7}\)
=> \(x^2\)=\(\dfrac{48}{7}\)
=> x=\(\sqrt{\dfrac{48}{7}}\)
\(\dfrac{2y^2}{10}\)=\(\dfrac{3}{7}\)
=> \(2y^2\)=\(\dfrac{30}{7}\)
2y=\(\sqrt{\dfrac{30}{7}}\)
y=\(\sqrt{\dfrac{30}{7}}\):2
y= 1,035098339.....
\(\dfrac{z^2}{36}\)=\(\dfrac{3}{7}\)
=> \(z^2\)=\(\dfrac{108}{7}\)
z= \(\sqrt{\dfrac{108}{7}}\)