K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

10 tháng 4 2016

Câu trả lời bài 1 ý a làm kiểu gì

11 tháng 7 2016

oc cho

Bài 1:Trên cùng một nửa mặt phẳng bờ Om, vẽ 2 tia On,Op sao cho góc mOn = 40o , góc mOp = 80o.a) Tia On có nằm giữa hai tia Om,Op không? Vì sao?b) Tính góc nOp?c) Tia On có là tia phân giác của góc mOp không? Vì sao?d) Gọi Oq là tia phân giác của góc mOn. Tính góc pOq.Bài 2:Chứng minh rằng: Q = 1/22 +1/32 +1/42 +.....+1/(n-1)2 +1/n2 < 1 với mọi n thuộc N, n > hoặc = 2Bài 3:a) Tìm n thuộc Z để 2n + 3 chia hết cho n-5b) Cho A...
Đọc tiếp

Bài 1:

Trên cùng một nửa mặt phẳng bờ Om, vẽ 2 tia On,Op sao cho góc mOn = 40o , góc mOp = 80o.

a) Tia On có nằm giữa hai tia Om,Op không? Vì sao?

b) Tính góc nOp?

c) Tia On có là tia phân giác của góc mOp không? Vì sao?

d) Gọi Oq là tia phân giác của góc mOn. Tính góc pOq.

Bài 2:

Chứng minh rằng: Q = 1/22 +1/32 +1/42 +.....+1/(n-1)2 +1/n2 < 1 với mọi n thuộc N, n > hoặc = 2

Bài 3:

a) Tìm n thuộc Z để 2n + 3 chia hết cho n-5

b) Cho A = 9999931999 - 5555571997 . Chứng minh rằng A chia hết cho 5

c) Chứng minh rằng với mọi n thuộc N thì 8n + 5/6n + 4 là phân số tối giản

d) So sánh: (1/243)9 và (1/82)12

Bài 4:

a) Chứng minh: A = 1/22 +1/32 +1/42 +......+1/n2 < 3/4    với mọi n thuộc N, n > hoặc = 2

b) Chứng minh rằng: n(n+15)chia hết cho 2 với mọi n thuộc N  ;  b1)  (n+1)*(3n+2) chia hết cho 2 với mọi n thuộc N

c) So sánh: 7150 và 3775

Bài 5:

a) Tìm x,y để A = 144xy chia hết cho 45

b) Cho B = 3n + 2/2n - 1 . Tìm n thuộc Z để B là số nguyên

Bài 6: 

a) Tính A = 1*2*3*...*9 - 1*2*3*..*8 - 1*2*3*....*8*8    ;   B = (3*4*216)2/11*213*411-169

b) Tìm x:

b1) /1/2-2x/ + 2/3 = 7/3                                                 b2) [(3x - 54) * 8] : 4 = 18

b3) (2x - 15)3 = (2x - 15)5                                              b4) x + x+1 + x+2 + ......+ x+2013 = 2035147

Bài 7:

a) 1 số tự nhiên nhỏ nhất biết số đó chia 3,4,5,6 đều dư 2, chia 7 dư 3

b) Tìm x,y nguyên biết: b1) (x-1)*(y-2) = 3                              b2) x + y +xy = 40

Bài 8:

Góc xBy = 55o . Tia Bx,By lấy A,C sao cho A khác B, C khác B, D thuộc AC sao cho góc ABD = 30o

a) Tính AC biết AD = 4, CD = 3

b) Tính góc DBC

c) Từ B về tia Bz sao cho góc DBz = 90o . Tính góc ABz

Bài 9:

a) Cho T = 2/2 +3/22 +4/22 +.....+2016/22 +2017/22 . So sánh T và 3

b) Tính B = (2017 - 1/4 - 2/5 - 3/5 - .... - 2017/2020) : (1/20 + 1/25 + 1/30 + ...... + 1/10100)

0

Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

\(=\overline{......0}\)

\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)

Bài 3:

a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=31+2^4.31+...+2^{96}.31\)

\(=31\left(1+2^4+...+2^{96}\right)⋮31\)

\(\Rightarrow\)\(đpcm\)

b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)

\(\Rightarrow C=2^{101}-2\)

Mà \(2^{2x}-2=C\)

\(\Rightarrow2^{2x}-2=2^{101}-2\)

\(\Rightarrow2^{2x}=2^{101}\)

\(\Rightarrow2x=101\)

\(\Rightarrow x=\frac{101}{2}\)

Vậy \(x=\frac{101}{2}\)

Bài 2:

Ta có : \(\overline{abcd}=1000a+100b+10c+d\)

\(=1000a+96b+8c+\left(d+2c+4b\right)\)

\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)

Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)

\(\Rightarrow\overline{abcd}⋮8\)

\(\Rightarrowđpcm\)

31 tháng 7 2017

1) B = 31 + 32 +...+ 32010

= (3+32) + (33 + 34) + ...+ (32009 + 32010 )

= 3(1+3) + 33(1+3) + ...+ 32009(1+3)

= 3.4 + 33.4 + ...+ 32009.4

= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)

B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)

= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)

= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)

Từ (1) và (2) => đpcm

b) Làm tương tự như câu a)

3)

a) Số chữ số chia hết cho 55 từ 11 đến 10001000

\(\dfrac{1000-5}{5}\)+1 =200 (số)

b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )

=> 1015 + 8 \(\equiv\) 0 (mod 9)

=> 1015 + 8 \(⋮\) 9

Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)

c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9

=> 102010 + 8 chia hết cho 9

d) Ta có : ab + ba

= 10a + b + 10b + a

= 11a + 11b

= 11(a+b) \(⋮\) 11

e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37

Chúc bn học tốt !