Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
\(2.\)
\(a.\)
Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\)
\(b.\)
Ta có : \(90^{20}=\left(9^2\right)^{10}=81^{10}\)
Vì \(81^{10}< \) \(9999^{10}\)
\(\Rightarrow99^{20}< 9999^{10}\)
\(3.\)
\(a.\)
Ta có : \(\left(2x+1\right)^2=4\)
\(\Rightarrow2x+1=\pm\sqrt{4}=\pm2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=2\\2x+1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b.\)
\(\left(3x-1\right)^3=27\)
\(\Rightarrow\left(3x-1\right)^3=3^3\)
\(\Rightarrow3x-1=3\)
\(\Rightarrow x=\dfrac{4}{3}\)
\(c.\)
\(\left(3x-1\right)^3=-\dfrac{8}{27}\)
\(\Rightarrow\left(3x-1\right)^3=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow3x-1=-\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{1}{9}\)
1 a) 2.16>2n>4 => 25>2n>22 => 5>n>2 => n=3;4
b) 9.27<3n<243 => 33<3n<35 => 3<n<5 => n=4
c) 125>5n+1>25 => 53>5n+1>52 =>3>n+1>2 => 3-1>n+1-1>2-1
=> 2>n>1 => không có giá trị nào của n để 2>n>1 khi n là số tự nhiên
2 a) 2332<2333 mà 2333=23.111=8111
3223>3222 mà 3222=32.111=9111
Vì 8111<9111 => 2333<3222 => 2332<3233
b) 9920=992.10=980110 mà 980110<999910 nên 9920<999910
3 a) (2x+1)2=4=22 => 2x+1=2 => x=\(\dfrac{1}{2}\)
b) (3x-1)3=27=33 => 3x-1=3 => x=\(\dfrac{4}{3}\)
c) (3x-1)3=-8/27=(-2/3)3 => 3x-1=-2/3 => x=\(\dfrac{1}{9}\)
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1