K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Ta có A = 123456789....99100 

Tống các chữ số của A là : ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) . 11 + 1 = 45 . 11 + 1 = 495 + 1 = 496 ko chia hết cho 3 => A ko chia hết cho 3 

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

Bài 1:Số học sinh tham gia đồng diễn thể dục là một số có 3 chữ số. Nếu cho xếp hàng 15; 20 hoặc 25 em một hàng đều còn thừa 12 em. Nếu xếp 36 em một hàng thì vừa đủ. Hỏi có bao nhiêu học sinh tham gia đồng diễn thể dục?Bài 2 :a) Tìm tất cả các số tự nhiên n để phân số \(\frac{5n+6}{8n+7}\)có thể rút gọn được.b) Viết liên tiếp các số tự nhiên 1; 2; 3; ... ; 1999 theo một thứ tự tùy ý...
Đọc tiếp

Bài 1:

Số học sinh tham gia đồng diễn thể dục là một số có 3 chữ số. Nếu cho xếp hàng 15; 20 hoặc 25 em một hàng đều còn thừa 12 em. Nếu xếp 36 em một hàng thì vừa đủ. Hỏi có bao nhiêu học sinh tham gia đồng diễn thể dục?

Bài 2 :

a) Tìm tất cả các số tự nhiên n để phân số \(\frac{5n+6}{8n+7}\)có thể rút gọn được.

b) Viết liên tiếp các số tự nhiên 1; 2; 3; ... ; 1999 theo một thứ tự tùy ý để được một số có nhiều chữ số. Hỏi số này có chia hết cho 2005 không?

Bài 3:

a) Tìm số nguyên tố p sao cho \(2p+1\)\(5p+2\)cũng là số nguyên tố.

b) Có bao nhiêu số có bốn chữ số được lập bởi các chữ số 1; 2; 3. Biết số đó chia hết cho 9.

Bài 4:

a) A= \(\frac{2001\times35+1929}{1999}\)

b) B= \(\frac{1\times3\times6+2\times6\times12+4\times12\times24+7\times21\times42}{1\times2\times3+2\times4\times6+4\times8\times12+7\times14\times21}\)

1
20 tháng 10 2017

Gọi số học sinh là x.

Theo đề ta có: x : 15,20,25 dư 12 => x - 12 \(⋮\)15,20,25.

=> \(x-12\in BC\left(15,20,25\right)\)

\(\Rightarrow x-12\in\left\{0;300;600;900;1200;...\right\}\)

\(\Rightarrow x\in\left\{12;312;612;912;1212;...\right\}\)

Mà x\(⋮\)36 và x có 3 chữ số => x = 612.

Vậy có 612 học sinh tham gia đồng diễn thể dục.

21 tháng 10 2015

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.

*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.

*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3) 

=> P = 3k + 1 hoặc 3k + 2

+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại

+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại

Vậy P chỉ có thể = 3

Bài 2: S = 30 + 31 + 32 + ... + 3123

S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)

S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)

S = 30.40 + ... + 3120.40

S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120

Vì tích chứa 10 => S chia hết cho 10.

21 tháng 10 2015

S = 1 + 3 + 32 + ... + 3123

S = ( 1 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )

S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)

S = 1.40 + 34.40 + ... + 3120.40

S = 4.10.(1+34+...+3120) chia hết cho 10

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn...
Đọc tiếp

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.

Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn vị này có không quá 1000 người.

Bài 15: Tìm các cặp số tự nhiên x,y, biết:

3) * \(2y\times\left(x+1\right)-x-7=0\)                             4) * \(xy-2x+y=15\)

Bài 16*: Tìm các số tự nhiên a,b (a<b), biết:

1) a + b = 336 và ƯCLN(a,b) = 24.      2) ƯCLN(a,b) = 6 và BCNN(a,b) = 36.      3) BCNN(a,b) = 150 và a.b = 3750.

4) a.b = 180 và BCNN(a,b)=20.ƯCLN(a,b).     5) a + b = 40 và BCNN(a,b) = 7.ƯCLN(a,b).      6) ƯCLN(a,b) + BCNN(a,b) = 21.

Bài 17*: So sánh các lũy thừa sau: a) 828 và 1521. b) 591 và 1159. c) 3319 và 1523.

Bài 18*: Chứng minh rằng:

1) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau.

2) \(\left(5n+1\right)\) và \(\left(6n+1\right)\) là hai số nguyên tố cùng nhau \(\left(n\in N\right)\)

3) BCNN\(\left(6n+1;n\right)=\left(6n2+n\right)\) với \(\left(n\in N\right)\)

4) \(S=31+32+33+...+3100⋮120\)

5) \(S=102015+8⋮18\)

6) Nếu \(\left(7a+2b;31a=9b\right)⋮2015\Rightarrow a,b⋮2015\left(a,b\in N\right)\)

7) Nếu p và p + 4 là hai số nguyên tố (p>3) thì p + 8 sẽ phải là hợp số.

8) Nếu a và b là hai số nguyên tố cùng nhau thì hai số \(13a+4b\)\(15a+7b\)hoặc cũng nguyên tố cùng nhau hoặc \(⋮31\)

Bài 19*:

1) Tìm ƯCLN\(\left(2n+1;9n+5\right)\)với\(n\in N\)

2) Tìm số nguyên tố p sao cho: \(p+4;p+10;p+14\)đều là số nguyên tố.

3) Tìm ba số lẻ liên tiếp đều là số nguyên tố.

4) Tìm số tự nhiên a nhỏ nhất thỏa mãn:\(a\div4\left(dư3\right),a\div17\left(dư9\right),a\div19\left(dư13\right)\)

5) Hãy tính tổng các ước số của \(A=217\times5\)

6) \(S=1+5+52+53+...+520\)Tìm số tự nhiên n thỏa mãn: \(4S=5n\)

7) Tìm số tự nhiên n, biết \(p=\left(n-2\right)\times\left(n2+n-5\right)\)là số nguyên tố.

8) Tìm số tự nhiên n, biết \(1+3+5+..+\left(2n=1\right)=169\)

9) Tìm số nguyên tố bé nhất trong ba số nguyên tố có tổng bằng 132.

10) Tìm hai số tự nhiên nhỏ nhất có đúng 18 ước số.

11) Tìm ba số tự nhiên liên tiếp có tích bằng 2184.

Bài 20*: 

a) Cho p và 2p + 1 là hai số nguyên tố (p>3). Hỏi 4p + 1 là số nguyên tố hay hợp số?

b) Một số chia cho 21 dư 2 và chia 12 dư 5. Hỏi số đó chia cho 84 thì dư bao nhiêu?

Nhớ nhanh lên nhé, đây là các bài trong đề cương của mình, tuần sau mình phải thi học kì 1 rồi!!! Nhanh lên!!! Mình chờ đấy!!!

3
5 tháng 12 2019

mình làm ơn đấy, trả lời giúp mình đi!!!!!!

help me please, I will repay you!!!!!!

8 tháng 12 2019

you just help me, I will repay you everywhere!!!!!!