K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

b: Ta có: \(x^2+y^2-4x+y+5\)

\(=\left(x^2-4x+4\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

Dấu '=' xảy ra khi x=2 và \(y=-\dfrac{1}{2}\)

21 tháng 7 2019

\(A=x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge0+\frac{7}{4}=\frac{7}{4}.\) Dâu bàng xay ra khi: \(x=\frac{-1}{2}\)

\(B=4x^2-4x-1=\left(4x^2-4x+1\right)-2=\left(2x-1\right)^2-2\ge0-2=-2\Rightarrow B_{min}=-2\) Dâu bàng xay ra: \(x=\frac{1}{2}\)

\(C=x^2+y^2+2x-4y+2=x^2+y^2+2x-4y+5-3=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-3=\left(x+1\right)^2+\left(y-2\right)^2-3\ge0+0-3=-3\) Dâu bàng xay ra\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

21 tháng 7 2019

\(A=1-x^2+2x-1=1-\left(x-1\right)^2\le1-0=1\Rightarrow A_{max}=1.\text{Dâu "=" xay ra}\Leftrightarrow x=1\) \(B=-\left(x^2-4x-4\right)-3=-\left(x-2\right)^2-3\le0-3=-3\Rightarrow B_{max}=-3.\text{Dâu "=" xay ra}\Leftrightarrow x=2\)

Đề bài là gì sao không ghi rõ?? 

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)