Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
=>2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
b, Vì \(2^m-2^n=256>0\) nên m >n
Đặt m-n=d (d >0)
Ta có :
\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)
=> 2n =28 và 2d-1=1
=>n=8 và d=1
=> m=1+8=9
Vậy m=9, n=8
Bài 3 : Tìm m, n nguyên dương thõa mãn :
a,\(2^m\) + \(2^n\) = \(2^{m+n}\)
b, \(2^m\) - \(2^n\) =256
a, 2m + 2n = 2m+n = 2m . 2n
mà 2m + 2n luôn \(\le\) 2m . 2n vì tổng luôn nhỏ hơn tích
và 2m . 2n = 2m + 2n chỉ khi 2m = 2n = 2m+n
=> m = n = 1
b, 256 = 28
ta có 2m - 2n = 256
=> 2m - 2n = 28
=> m \(\ge\) 9
m = 9 khi 2n = 28
=> m = 9; n = 8
THỎA MÃN ĐỀ BÀI
CHÚC BN HC TỐT
a) \(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow2^m+2^n=2^m.2^n\)
\(\Leftrightarrow2^m.2^n-2^m-2^n=0\)
\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)
\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2^m-1=-1\\2^n-1=-1\end{cases}}\Leftrightarrow m,n\in\left\{\varnothing\right\}\)
Vậy m = n = 1
\(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)
\(TH1:m-n< 2\)\(\Rightarrow\hept{\begin{cases}n=8\\m=9\end{cases}}\)
\(TH2:m-n\ge2\)
VP chứa toàn thừa số nguyên tố 2 nên VP chẵn.
*Xét VT: \(2^{m-n}-1\)lẻ vì \(m-n\ge2\)
Suy ra : VT lẻ, VP chẵn ( vô lí )
Vậy m = 9 , n = 8
a)m=n=1