K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-2\right)>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+8>=0\)

=>-8m>=-12

hay m<=3/2

b: \(\Leftrightarrow\left(4m-4\right)^2-4\cdot\left(-2\right)\cdot\left(4m-6\right)>0\)

\(\Leftrightarrow16m^2-32m+16+32m-48>0\)

\(\Leftrightarrow16m^2>32\)

hay \(\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\)

22 tháng 1 2022

 \(a,\Delta'=\left[-\left(m-1\right)\right]^2-1\left(m^2-2\right)\\ =m^2-2m+1-m^2+2\\ =-2m+3\)

Để pt có nghiệm thì \(\Delta'\ge0\) hay

\(\Leftrightarrow-2m+3\ge0\\ \Leftrightarrow m\le\dfrac{3}{2}\)

\(b,\Delta'=\left[-2\left(m-1\right)\right]^2-\left(-2\right)\left(4m-6\right)\\ =4\left(m^2-2m+1\right)+2\left(4m-6\right)\\ =4m^2-8m+4+8m-12\\ =4m^2-8\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) hay

\(4m^2-8>0\\ \Leftrightarrow\left[{}\begin{matrix}x< -\sqrt{2}\\x>\sqrt{2}\end{matrix}\right.\)

20 tháng 4 2016

a, đenta' = m^2+1>0 với mọi m

=>pt luôn có 2 nghiệm phân biệt với mọi m

b, theo viet ta có:

x12+x22=7

<=>(x1+x2)2-2x1x2=7

=>(2m)2+2=7

=>4m2=5

=> m2=5/4

=>m=căn(5)/2 hoặc m=-căn(5)/2

18 tháng 10 2020

a) Với m = 3 

Ta có: \(x^4-2.3.x^2+3^2-1=0\)

<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)

<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)

b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)

(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0 

Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)

+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm 

+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại

Vậy m = 1

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra 

12 tháng 5 2019

Lập: \(\Delta'=b'^2-ac=1^2-1.\left(m-1\right)=1-m+1=2-m\)

Phương trình có hai nghiệm phân biệt khi: \(\Delta>0\Leftrightarrow2-m>0\Leftrightarrow m< 2\)

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\frac{-b}{a}=\frac{2}{1-m};x_1x_2=\frac{c}{a}=\frac{1}{m-1}\)

Thay \(x_1=2x_2\)vào rồi tự giải tiếp nha, mk lười viết công thức quá

12 tháng 5 2019

Mình ra không tồn tại m cơ, đáp án của bạn là gì?