Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)
\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10
a. y = k . x
10 = k . 4
k = 10 / 4
k = 2,5
b và c tự làm nhé
\(a,y=kx\Leftrightarrow30=2k\Leftrightarrow k=15\\ b,y=15x\\ c,x=4\Leftrightarrow y=15\cdot4=60\\ x=6\Leftrightarrow y=15\cdot6=90\\ 2,y=\dfrac{a}{x}\Leftrightarrow a=x\cdot y=50\\ \Leftrightarrow y=\dfrac{50}{x}\)
a) Em ghi đề lại cho đúng
b) Hệ số tỉ lệ của y đối với x:
k = y/x = 30/(-5) = -6
c) Do x và y tỉ lệ nghịch nên hệ số tỉ lệ:
a = x.y = 6.(-9) = -54
bài 1:
a, \(x=6;y=4\) được \(4=k6\Rightarrow=\frac{4}{6}=\frac{2}{3}\)
b, \(k=\frac{2}{3}\) được \(y=\frac{2}{3}x\)
c, được \(k=\frac{2}{3}\Rightarrow y=\frac{2}{3}x\) nên \(x=10\Leftrightarrow y=3,3\)
bài 2:
a, x và y tỉ lệ nghịch với nhau nên \(y=\frac{a}{x}\left(a\ne0\right)\)
đề ra, có \(x=8\Leftrightarrow y=15\)
\(\Rightarrow15=\frac{a}{8}\)
\(\Rightarrow a=120\)
thay a = 120 vào công thức \(y=\frac{a}{x}\) biểu diễn được y theo x: \(y=\frac{120}{x}\)
b, x và y tỉ lệ nghịc với nhau nên \(x=\frac{a}{y}\left(a\ne0\right)\)
đề ra, có \(x=8\Leftrightarrow y=15\)
\(\Rightarrow8=\frac{a}{15}\)
\(\Rightarrow a=120\)
vậy hệ số tỉ lệ của x đối với y là 120
c, với x = 6 thì \(y=\frac{120}{6}=20\)
với x = 10 thì \(y=\frac{120}{10}=12\)
bài 1:
a, x=6;y=4x=6;y=4 được 4=k6⇒=46=234=k6⇒=46=23
b, k=23k=23 được y=23xy=23x
c, được k=23⇒y=23xk=23⇒y=23x nên x=10⇔y=3,3x=10⇔y=3,3
bài 2:
a, x và y tỉ lệ nghịch với nhau nên y=ax(a≠0)y=ax(a≠0)
đề ra, có x=8⇔y=15x=8⇔y=15
⇒15=a8⇒15=a8
⇒a=120⇒a=120
thay a = 120 vào công thức y=axy=ax biểu diễn được y theo x: y=120xy=120x
b, x và y tỉ lệ nghịc với nhau nên x=ay(a≠0)x=ay(a≠0)
đề ra, có x=8⇔y=15x=8⇔y=15
⇒8=a15⇒8=a15
⇒a=120⇒a=120
vậy hệ số tỉ lệ của x đối với y là 120
c, với x = 6 thì y=1206=20y=1206=20
với x = 10 thì y=12010=12
Bài 1:
Giải:
Vì đại lượng x tỉ lệ nghịch với đại lượng y nên ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) và \(x+y=14\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{3}=2\Rightarrow y=6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(8;6\right)\)
Bài 2:
Giải:
Vì x và y là 2 đại lượng tỉ lệ nghịch nên ta có:
\(6x=8y\Rightarrow\frac{x}{8}=\frac{y}{6}\) và \(2x-3y=10\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{6}=\frac{2x}{16}=\frac{3y}{18}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)
+) \(\frac{x}{8}=-5\Rightarrow x=-40\)
+) \(\frac{y}{6}=-5\Rightarrow y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-40;-30\right)\)
1/ Ta có: x;y tỉ lệ nghịch với 3,4
=> \(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\) và x+y = 14
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\)=\(\frac{x+y}{\frac{1}{3}+\frac{1}{4}}\)=\(\frac{\frac{14}{7}}{12}\)=24
\(\frac{\frac{x}{1}}{3}\)=24 => x = 8
\(\frac{\frac{y}{1}}{4}\)=24 => y = 6
Vậy x = 8 ; y =6
2/ Ta có: x;y tỉ lệ nghịch với 6;8
=> \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\) và 2x-3y = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\)=\(\frac{2x-3y}{2.\frac{1}{6}-3.\frac{1}{8}}\)=\(\frac{\frac{10}{-1}}{24}\)=\(\frac{-5}{12}\)
\(\frac{\frac{x}{1}}{6}\)=\(\frac{-5}{12}\)=> x = \(\frac{-5}{72}\)
\(\frac{\frac{y}{1}}{8}\)=\(\frac{-5}{12}\)=> y = \(\frac{-5}{96}\)
Vậy x= \(\frac{-5}{72}\)
y = \(\frac{-5}{96}\)