Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Đặt m=x2+5x+4, ta có:
\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)
\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)
Tự làm tiếp :v
\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)
\(=\left(x^2+5x+5\right)^2-1-24\)
\(=\left(x^2+5x+5\right)^2-25\)
\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(2.a\) Đặt \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)
Thay vào PT ta được:\(a^2+6b^2=7ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)
Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(
Ta có:
\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)
\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)
Theo định lý Huy ĐZ ta có:
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)
\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\) ta được:
\(9+3a+3b=9\Leftrightarrow a+b=0\)
Khi đó:
\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )
Ap dung dinh ly Bozout ta co
\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)
<=> \(4a+2b+c=-3\) (1)
tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)
<=> \(a-b+c=-3\) (2)
tu (1) va (2) => \(4a+2b=a-b=-3\)
=> a=b+-3
=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)
=> \(a=-\frac{3}{2}\)
=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)
=> gia tri bieu thuc =0
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm