Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:Ko phụ thuộc vào biết t nha
(3t+2)(2t+1)+(3-t)(t+2)=\(6t^2+3t+4t+2+3t+6-t^2-2t.\)
=\(5t^2+8t+8\) Vậy biểu thức phụ thuộc vào biến t
->đpcm sai.
\(A=-x^2+2x+3=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2x+1-4\right)\)
\(=-\left[\left(x-1\right)^2-4\right]=-\left(x-1\right)^2+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=-2x^2-4x=-2\left(x^2+2x\right)\)
\(=-2\left(x^2+2x+1-1\right)\)
\(=-2\left[\left(x+1\right)^2-1\right]=-\left(x+1\right)^2+2\le2\)
Vậy \(B_{max}=2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(C=-x^2-6x+12=-\left(x^2+6x-12\right)\)
\(=-\left(x^2+6x+9-21\right)\)
\(=-\left[\left(x+3\right)^2-21\right]=-\left(x+3\right)^2+21\le21\)
Vậy \(C_{max}=21\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(D=-x^2+3x-1==-\left(x^2-3x+1\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(D_{max}=\frac{5}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)