K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bài 1 :
Theo định lý vi-et ta có:
{xy=a+bx+y=ab{xy=a+bx+y=ab (với x,y là nghiệm của phương trình)
Giả sử ab>xy Suy ra x+y>xy suy ra x(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1
Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)
Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1
Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8 (đến đoạn này ok)
Trường hợp còn lại CM tương tự
Bài 2 :
Để phương trình có ít nhất một nghiệm thì:
Δ=(2p−1)2−4⋅3⋅(p2−6p+11)≥0
=−8p2+68p−131 (1)
Giải pt (1) ta được:
p=17±3√34