Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài1.432^2019
=(432^4)^504*432^3
=(...6)^504*432^3
=(...6)*(...8)
=(...8)
=>tận cùng của 4322019 =8
Ta có :...2 mũ 4=.....6
Suy ra:432^2019=...2^4*504+3
=>...6^504*...2^3
=....6*...8
=...8
Chữ số tận cùng của 72^4n+1thì mk ko bt
Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))
Hok tốt
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
2. a) \(7^2=49\equiv-1\left(mod5\right)\)
\(\Rightarrow\left(7^2\right)^{6n}\equiv\left(-1\right)^{6n}\left(mod5\right)\)
\(\Rightarrow7^{12n}\equiv1\left(mod5\right)\Rightarrow7^{12n}-1⋮5\)
b) + \(12^2=144\equiv-1\left(mod5\right)\)
\(\Rightarrow12^{4n}\equiv1\left(mod5\right)\Rightarrow12^{4n+1}\equiv2\left(mod5\right)\) (1)
+ \(3^2\equiv-1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\) (2)
+ Từ (1) và (2) \(\Rightarrow12^{4n+1}+3^{4n+1}⋮5\)
c) \(9\equiv-1\left(mod10\right)\Rightarrow9^{2019}\equiv\left(-1\right)^{2019}\left(mod10\right)\)
\(\Rightarrow9^{2019}+4\equiv-1+4=-3\left(mod10\right)\)
=> \(9^{2014}+4\) chia 10 dư 7
Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)
Lại có:
\(2^{10}\equiv 24\equiv -1\pmod {25}\)
\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)
Đặt \(2^{5.2019}=25k+18\).
Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)
Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)
Từ (1);(2) suy ra $k$ có dạng $4t+2$
Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$
\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$