Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = - (x^2 -2xy +y^2)+7(x-y)
= -(x-y)7( x-y)
b) = -((x^2 -2xy +y^2)- 16)
= -((x-y)^2-4^2)
=-(x-y+4 )(x-y-4)
c) =3x^2+3x+2x +2
=(x+1)(3x+2)
d) làm tương tự câu c)
a: \(\Leftrightarrow9x^2-12x+4-6x^2-16x=0\)
\(\Leftrightarrow3x^2-28x+4=0\)
\(\text{Δ}=\left(-28\right)^2-4\cdot3\cdot4=736>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{28-4\sqrt{46}}{6}=\dfrac{14-2\sqrt{46}}{3}\\x_2=\dfrac{14+2\sqrt{46}}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow16x^2+24x+9-16x^2+25=12\)
=>24x+34=12
=>24x=-22
hay x=-11/12
chắc bn nảy hỏi lun cả bài tâp về nhà quá, làm km 1 câu
a) = a+a+a + a +a +1 -a -a -a = a(a+a+1) +(a+a+1) - a(a+a+1)= (a+a+1)(a-a+1)
tự bn thêm mũ 4;3;2 vào được là bn làm dc cac câu sau
a =>5x(x2-6x+9)-5(x3-3x2+3x-1)+15(x2-4)=5
=>5x3-30x2+45x-5x3+15x2+15x+5+152-50=5
=>60x-55=5
=>x=1
c) x2 ( x2 +1 ) - x2 -1 =0
x2 (x2 +1) -(x2 +1) =0
(x2 +1)(x2 -1) =0
*) x2 = -1 --> x không có giá trị thỏa mãn
*) x2 = 1 --> x = 1
Vậy x= 1
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
a/ \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-4\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60-5=0\)
\(\Leftrightarrow30x-60=0\)
\(\Leftrightarrow30x=60\)
\(\Leftrightarrow x=2\)
vậy x=2
b/ \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(\Leftrightarrow3x-4x^2+6-8x=x^2+4x+4\)
\(\Leftrightarrow x^2+4x^2+4x+18x-3x+4-6=0\)
\(\Leftrightarrow5x^2+9x-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-2\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5}\) hoặc \(x=-2\)
c/ \(x^2\left(x^2+1\right)-x^2-1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)=0\)
vì x2+1 >0 nên x2 - 1 = 0 \(\Rightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
vậy \(x=1\) hoặc \(x=-1\)
\(D=-x^2-4x\)
\(=-\left(x^2+4x\right)\)
\(=-\left(x^2+2.x.2+2^2-4\right)\)
\(=-\left[\left(x+2\right)^2-4\right]\)
\(=-\left(x+2\right)^2+4\)
Vì \(-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)
\(\Rightarrow D\le4\forall Dx\)
Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(MAX_D=4\) khi \(x=-2.\)
1. a) 762 + 242 + 48.76 = 242 + 2.24.76 + 762 = (24 + 76)2 = 1002 = 10000
b) 202.198 - 203.197 = (200 + 2)(200 - 2) - (200 + 3)(200 - 3) = (2002 - 22) - (2002 - 32) = 9 - 4 = 5
2 . x2 - 4x + 5 = x2 - 2.x.2 + 22 + 1 = (x - 2)2 + 1 .
(x - 2)2\(\ge0\)nên GTNN của x2 - 4x + 5 là : 0 + 1 = 1 tại : (x - 2)2 = 0 <=> x = 2
\(76^2+24^2+48\cdot76\)
\(=76^2+48+48\cdot76\)
\(=48\left(5776+76\right)\)
\(=48\cdot5852\)
\(=280896\)