\(25\times(\frac{5}{2})^{-2}\times(-2^{-3})^{-1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

\(4.\left(\frac{1}{4}\right)^2+25\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3=4.\frac{1}{16}+25\left(\frac{27}{64}.\frac{64}{125}\right).\frac{8}{27}\)

\(=\frac{1}{4}+25.\frac{27}{125}.\frac{8}{27}=\frac{1}{4}+\frac{8}{5}=\frac{37}{20}\)

\(2^3+3\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8=8+3-1+4.2-8=10\)

4 tháng 8 2019

a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

4 tháng 8 2019

\(a,25^3:5^2\)

=\(\left(5^2\right)^3:5^2\)

=\(5^6:5^2\)

=\(5^4\)

\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)

\(=\left(\frac{3}{7}\right)^9\)

\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

=\(3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{4}\cdot\frac{1}{2}\)

\(=2+\frac{1}{8}\)

\(=\frac{17}{8}\)

\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)

\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)

\(=-\frac{14}{5}\cdot\frac{11}{16}\)

\(=-\frac{77}{40}\)

\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)

\(=\frac{2}{3}-\frac{1}{5}\)

\(=\frac{7}{15}\)

13 tháng 6 2019

Bài 1:

a) \(\frac{2}{5}+\frac{1}{5}.\left(\frac{3}{4}\right)\)

= \(\frac{2}{5}+\frac{3}{20}\)

= \(\frac{11}{20}\)

b) \(\frac{5}{12}.\left(-\frac{3}{4}\right)\) + \(\frac{7}{12}.\left(-\frac{3}{4}\right)\)

= \(\left(\frac{5}{12}+\frac{7}{12}\right).\left(-\frac{3}{4}\right)\)

= 1.\(\left(-\frac{3}{4}\right)\)

= \(-\frac{3}{4}\)

Còn câu c) đang nghĩ.

Bài 2:

a) \(\frac{5}{7}+\frac{2}{7}\)x = 1

1.x = 1

x = 1 : 1

x = 1

Vậy x = 1.

b) 0,2 + | x - 1, 3 = 1, 5|

0,2 + x = 1, 5 + 1, 3

0,2 + x = 2, 8

x = 2, 8 - 0, 2

x = 2, 6

Vậy x = 2, 6.

c) 2x + 5 = 37

2x = 37 - 5

2x = 32

2x = 25

=> x = 5

Vậy x = 5.

d) 2x + 2x + 1 = 48

2x . 1 + 2x . 21 = 48

2x . ( 1 + 2) = 48

2x . 3 = 48

2x = 48 : 3

2x = 16

2x = 24

=> x = 4

Vậy x = 4.

Chúc bạn học tốt!

13 tháng 6 2019

làm bước trung gian giùm mình luôn nhé

thanks trước những bạn làm giùm nhé

mình đang cần gấp lắm sáng mai là mình cần ai đang on làm giùm mình nhé

thanks

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bài 1:

a)

\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)

\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)

\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)

b)

\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)

\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)

c)

\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)

\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bài 2:

a)

\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)

b)

\((\frac{1}{2}-x)^2=(-2)^2=2^2\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)

c)

\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)

\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)

d)

\(3^{2x+1}=81=3^4\)

\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)