K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Bài1:

Gọi hai số đó lần lượt là a và b
ta có

a + b = 17 (1)
a² + b² = 157 (2)

từ (1) ==> a = 17 - b
Thế vao (2)

(17 - b)² + b² = 157
289 - 34b + b² + b² = 157
2b² - 34b + 132 = 0

b² - 17b + 66 = 0
(b - 6)(b - 11) = 0

b = 6 hoặc b = 11

Bài 2:

Tham khảo in my link:https://olm.vn/hoi-dap/detail/98094568627.html

~Hok tốt~

20 tháng 4 2016

gọi chữ số hàng chục là a ( a thuộc tập hợp N*)

thì chữ số hàng đơn vị là 3a

ta được số ban đầu là 10a + 3a = 13a

số sau khi đổi chỗ là 10.3a + a = 31a

vì sau khi đỗi chỗ các chữ số thì số mới hơn số ban đầu 18 đơn vị nên ta có phương trình

13a + 18 = 31a

<=> 13a - 31a = -18

<=> -18a = -18

<=> a = 1  (thỏa mãn điều kiện )

=> 3a = 3

vạy ta được số 13

20 tháng 4 2016

Gọi x(đơn vị ) là chữ số hàng chục

Đk: 9>=x>o

Chữ số hàng đơn vị là : 3x (đơn vị )

 số cần tìm có dạng là: (10x+3x)

Sau khi đổi chỗ được số mới là : (30x+x)

Theo đề bài ta có pt

30x+x-(10x+3x) =18

<=> 18x=18

<=>x=1 (TMĐK)

Vậy số cần tìm là 13

Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)

Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:

\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\))  \(\Rightarrow a=b+2=7\)

Vậy số cần tìm là 75

30 tháng 9 2015

Gọi chữ số đơn vị là x (0 < x < 7)

Chữ số hàng chục là x + 2

Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :

10(x + 2) + x = (x + 2)2 + x2 + 1

Giải phương trình trên ta được x = 5 => x + 2 = 7

Số cần tìm là 75

30 tháng 1 2024

Bài 1:

Tổng số phần bằng nhau: 8+1=9(phần)

Số bé là: 72:9 x 1 = 8

Số lớn là: 8 x 8 = 64

Đ.số:2  số đó là 8 và 64

6 tháng 8 2023

Số tự nhiên 2 chữ số  \(\overline{xy}=10x+y\)

Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)

Khi viết ngược lại :

\(10y+x-\left(10x+y\right)=27\)

\(\Rightarrow10y+x-10x-y=27\)

\(\Rightarrow-9x+9y=27\left(2\right)\)

\(\left(1\right),\left(2\right)\) ta có hệ phương trình

\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)

Vậy số tự nhiên đó là 47