\(\dfrac{a}{b}\) và \(\dfrac{a+2017}{b+2017}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)

Ta cần so sánh:

\(ab+2017a\) với \(ab+2017b\)

Cần so sánh \(a\) với \(b\)

Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

Mấy câu sau dễ tương tự

8 tháng 11 2017

Câu 1:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}\right)\) - \(\left(\dfrac{x+1}{13}+\dfrac{x+1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)\)= 0

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

=> x = 0 - 1

=> x = -1

8 tháng 11 2017

Câu 2:

Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-3.4+9+12}{n-4}\)

\(=\dfrac{3.\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A có giá trị nguyên thì:

n - 4 \(\in\) Ư(21)

=> n - 4 \(\in\)

n4 3 -3 7 -7 -1 1 -21 21
n 7 1 11 -3 3 5 -17 25

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

24 tháng 8 2017

Tính kiểu lớp 7 hay kiểu lớp 8 v Bo?

24 tháng 8 2017

Vậy Bo dùng máy tính tính đi,dễ mà,máy tính tính đc

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

9 tháng 9 2018

Bài 1.

Giải

a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)

\(\Rightarrow21⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bẳng sau:

\(n-4\) \(-21\) \(-7\) \(-3\) \(-1\) \(1\) \(3\) \(7\) \(21\)
\(n\) \(-17\) \(-3\) \(1\) \(3\) \(5\) \(7\) \(11\) \(25\)

Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)

b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)

\(\Rightarrow8⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

\(2n-1\) \(-8\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\) \(8\)
\(2n\) \(-7\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\) \(9\)
\(n\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(0\) \(1\) \(\dfrac{3}{2}\) \(\dfrac{5}{2}\) \(\dfrac{9}{2}\)

Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)

9 tháng 9 2018

Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!

Bài 2:

\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:

\(x-2018=0\Leftrightarrow x=2018\)

Bài 3:

a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)

Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)

Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)

Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)

b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)

\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.

11 tháng 7 2017

2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)

b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm

c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)

\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)

d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)

11 tháng 7 2017

1) tìm GTNN

a) \(B=\left|x-2017\right|+\left|x-20\right|\)

B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)

Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)

Vậy MinB = 1997 khi 20 \(\le x\le2017\)

b) \(C=\left|x-3\right|+\left|x-5\right|\)

\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi 3 \(\le x\le5\)

Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)

c) \(C=\left|x^2+4\right|+3\)

Ta thấy \(x^2+4\ge0\) với mọi x

nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7

Dấu " =" xảy ra khi x = 0

MinC = 7 khi và chỉ khi x = 0

Câu 2: 

Ta có: \(x^2=1\)

=>x=1 hoặc x=-1

=>x là số hữu tỉ